Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | // |
| 15 | // ----------------------------------------------------------------------------- |
| 16 | // mutex.h |
| 17 | // ----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // This header file defines a `Mutex` -- a mutually exclusive lock -- and the |
| 20 | // most common type of synchronization primitive for facilitating locks on |
| 21 | // shared resources. A mutex is used to prevent multiple threads from accessing |
| 22 | // and/or writing to a shared resource concurrently. |
| 23 | // |
| 24 | // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional |
| 25 | // features: |
| 26 | // * Conditional predicates intrinsic to the `Mutex` object |
| 27 | // * Shared/reader locks, in addition to standard exclusive/writer locks |
| 28 | // * Deadlock detection and debug support. |
| 29 | // |
| 30 | // The following helper classes are also defined within this file: |
| 31 | // |
| 32 | // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/ |
| 33 | // write access within the current scope. |
| 34 | // ReaderMutexLock |
| 35 | // - An RAII wrapper to acquire and release a `Mutex` for shared/read |
| 36 | // access within the current scope. |
| 37 | // |
| 38 | // WriterMutexLock |
| 39 | // - Alias for `MutexLock` above, designed for use in distinguishing |
| 40 | // reader and writer locks within code. |
| 41 | // |
| 42 | // In addition to simple mutex locks, this file also defines ways to perform |
| 43 | // locking under certain conditions. |
| 44 | // |
| 45 | // Condition - (Preferred) Used to wait for a particular predicate that |
| 46 | // depends on state protected by the `Mutex` to become true. |
| 47 | // CondVar - A lower-level variant of `Condition` that relies on |
| 48 | // application code to explicitly signal the `CondVar` when |
| 49 | // a condition has been met. |
| 50 | // |
| 51 | // See below for more information on using `Condition` or `CondVar`. |
| 52 | // |
| 53 | // Mutexes and mutex behavior can be quite complicated. The information within |
| 54 | // this header file is limited, as a result. Please consult the Mutex guide for |
| 55 | // more complete information and examples. |
| 56 | |
| 57 | #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_ |
| 58 | #define ABSL_SYNCHRONIZATION_MUTEX_H_ |
| 59 | |
| 60 | #include <atomic> |
| 61 | #include <cstdint> |
| 62 | #include <string> |
| 63 | |
| 64 | #include "absl/base/const_init.h" |
| 65 | #include "absl/base/internal/identity.h" |
| 66 | #include "absl/base/internal/low_level_alloc.h" |
| 67 | #include "absl/base/internal/thread_identity.h" |
| 68 | #include "absl/base/internal/tsan_mutex_interface.h" |
| 69 | #include "absl/base/port.h" |
| 70 | #include "absl/base/thread_annotations.h" |
| 71 | #include "absl/synchronization/internal/kernel_timeout.h" |
| 72 | #include "absl/synchronization/internal/per_thread_sem.h" |
| 73 | #include "absl/time/time.h" |
| 74 | |
| 75 | // Decide if we should use the non-production implementation because |
| 76 | // the production implementation hasn't been fully ported yet. |
| 77 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| 78 | #error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set |
| 79 | #elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING) |
| 80 | #define ABSL_INTERNAL_USE_NONPROD_MUTEX 1 |
| 81 | #include "absl/synchronization/internal/mutex_nonprod.inc" |
| 82 | #endif |
| 83 | |
| 84 | namespace absl { |
| 85 | |
| 86 | class Condition; |
| 87 | struct SynchWaitParams; |
| 88 | |
| 89 | // ----------------------------------------------------------------------------- |
| 90 | // Mutex |
| 91 | // ----------------------------------------------------------------------------- |
| 92 | // |
| 93 | // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock |
| 94 | // on some resource, typically a variable or data structure with associated |
| 95 | // invariants. Proper usage of mutexes prevents concurrent access by different |
| 96 | // threads to the same resource. |
| 97 | // |
| 98 | // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`. |
| 99 | // The `Lock()` operation *acquires* a `Mutex` (in a state known as an |
| 100 | // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a |
| 101 | // Mutex. During the span of time between the Lock() and Unlock() operations, |
| 102 | // a mutex is said to be *held*. By design all mutexes support exclusive/write |
| 103 | // locks, as this is the most common way to use a mutex. |
| 104 | // |
| 105 | // The `Mutex` state machine for basic lock/unlock operations is quite simple: |
| 106 | // |
| 107 | // | | Lock() | Unlock() | |
| 108 | // |----------------+------------+----------| |
| 109 | // | Free | Exclusive | invalid | |
| 110 | // | Exclusive | blocks | Free | |
| 111 | // |
| 112 | // Attempts to `Unlock()` must originate from the thread that performed the |
| 113 | // corresponding `Lock()` operation. |
| 114 | // |
| 115 | // An "invalid" operation is disallowed by the API. The `Mutex` implementation |
| 116 | // is allowed to do anything on an invalid call, including but not limited to |
| 117 | // crashing with a useful error message, silently succeeding, or corrupting |
| 118 | // data structures. In debug mode, the implementation attempts to crash with a |
| 119 | // useful error message. |
| 120 | // |
| 121 | // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it |
| 122 | // is, however, approximately fair over long periods, and starvation-free for |
| 123 | // threads at the same priority. |
| 124 | // |
| 125 | // The lock/unlock primitives are now annotated with lock annotations |
| 126 | // defined in (base/thread_annotations.h). When writing multi-threaded code, |
| 127 | // you should use lock annotations whenever possible to document your lock |
| 128 | // synchronization policy. Besides acting as documentation, these annotations |
| 129 | // also help compilers or static analysis tools to identify and warn about |
| 130 | // issues that could potentially result in race conditions and deadlocks. |
| 131 | // |
| 132 | // For more information about the lock annotations, please see |
| 133 | // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) |
| 134 | // in the Clang documentation. |
| 135 | // |
| 136 | // See also `MutexLock`, below, for scoped `Mutex` acquisition. |
| 137 | |
| 138 | class ABSL_LOCKABLE Mutex { |
| 139 | public: |
| 140 | // Creates a `Mutex` that is not held by anyone. This constructor is |
| 141 | // typically used for Mutexes allocated on the heap or the stack. |
| 142 | // |
| 143 | // To create `Mutex` instances with static storage duration |
| 144 | // (e.g. a namespace-scoped or global variable), see |
| 145 | // `Mutex::Mutex(absl::kConstInit)` below instead. |
| 146 | Mutex(); |
| 147 | |
| 148 | // Creates a mutex with static storage duration. A global variable |
| 149 | // constructed this way avoids the lifetime issues that can occur on program |
| 150 | // startup and shutdown. (See absl/base/const_init.h.) |
| 151 | // |
| 152 | // For Mutexes allocated on the heap and stack, instead use the default |
| 153 | // constructor, which can interact more fully with the thread sanitizer. |
| 154 | // |
| 155 | // Example usage: |
| 156 | // namespace foo { |
| 157 | // ABSL_CONST_INIT Mutex mu(absl::kConstInit); |
| 158 | // } |
| 159 | explicit constexpr Mutex(absl::ConstInitType); |
| 160 | |
| 161 | ~Mutex(); |
| 162 | |
| 163 | // Mutex::Lock() |
| 164 | // |
| 165 | // Blocks the calling thread, if necessary, until this `Mutex` is free, and |
| 166 | // then acquires it exclusively. (This lock is also known as a "write lock.") |
| 167 | void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION(); |
| 168 | |
| 169 | // Mutex::Unlock() |
| 170 | // |
| 171 | // Releases this `Mutex` and returns it from the exclusive/write state to the |
| 172 | // free state. Caller must hold the `Mutex` exclusively. |
| 173 | void Unlock() ABSL_UNLOCK_FUNCTION(); |
| 174 | |
| 175 | // Mutex::TryLock() |
| 176 | // |
| 177 | // If the mutex can be acquired without blocking, does so exclusively and |
| 178 | // returns `true`. Otherwise, returns `false`. Returns `true` with high |
| 179 | // probability if the `Mutex` was free. |
| 180 | bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true); |
| 181 | |
| 182 | // Mutex::AssertHeld() |
| 183 | // |
| 184 | // Return immediately if this thread holds the `Mutex` exclusively (in write |
| 185 | // mode). Otherwise, may report an error (typically by crashing with a |
| 186 | // diagnostic), or may return immediately. |
| 187 | void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK(); |
| 188 | |
| 189 | // --------------------------------------------------------------------------- |
| 190 | // Reader-Writer Locking |
| 191 | // --------------------------------------------------------------------------- |
| 192 | |
| 193 | // A Mutex can also be used as a starvation-free reader-writer lock. |
| 194 | // Neither read-locks nor write-locks are reentrant/recursive to avoid |
| 195 | // potential client programming errors. |
| 196 | // |
| 197 | // The Mutex API provides `Writer*()` aliases for the existing `Lock()`, |
| 198 | // `Unlock()` and `TryLock()` methods for use within applications mixing |
| 199 | // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this |
| 200 | // manner can make locking behavior clearer when mixing read and write modes. |
| 201 | // |
| 202 | // Introducing reader locks necessarily complicates the `Mutex` state |
| 203 | // machine somewhat. The table below illustrates the allowed state transitions |
| 204 | // of a mutex in such cases. Note that ReaderLock() may block even if the lock |
| 205 | // is held in shared mode; this occurs when another thread is blocked on a |
| 206 | // call to WriterLock(). |
| 207 | // |
| 208 | // --------------------------------------------------------------------------- |
| 209 | // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock() |
| 210 | // --------------------------------------------------------------------------- |
| 211 | // State |
| 212 | // --------------------------------------------------------------------------- |
| 213 | // Free Exclusive invalid Shared(1) invalid |
| 214 | // Shared(1) blocks invalid Shared(2) or blocks Free |
| 215 | // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1) |
| 216 | // Exclusive blocks Free blocks invalid |
| 217 | // --------------------------------------------------------------------------- |
| 218 | // |
| 219 | // In comments below, "shared" refers to a state of Shared(n) for any n > 0. |
| 220 | |
| 221 | // Mutex::ReaderLock() |
| 222 | // |
| 223 | // Blocks the calling thread, if necessary, until this `Mutex` is either free, |
| 224 | // or in shared mode, and then acquires a share of it. Note that |
| 225 | // `ReaderLock()` will block if some other thread has an exclusive/writer lock |
| 226 | // on the mutex. |
| 227 | |
| 228 | void ReaderLock() ABSL_SHARED_LOCK_FUNCTION(); |
| 229 | |
| 230 | // Mutex::ReaderUnlock() |
| 231 | // |
| 232 | // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to |
| 233 | // the free state if this thread holds the last reader lock on the mutex. Note |
| 234 | // that you cannot call `ReaderUnlock()` on a mutex held in write mode. |
| 235 | void ReaderUnlock() ABSL_UNLOCK_FUNCTION(); |
| 236 | |
| 237 | // Mutex::ReaderTryLock() |
| 238 | // |
| 239 | // If the mutex can be acquired without blocking, acquires this mutex for |
| 240 | // shared access and returns `true`. Otherwise, returns `false`. Returns |
| 241 | // `true` with high probability if the `Mutex` was free or shared. |
| 242 | bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true); |
| 243 | |
| 244 | // Mutex::AssertReaderHeld() |
| 245 | // |
| 246 | // Returns immediately if this thread holds the `Mutex` in at least shared |
| 247 | // mode (read mode). Otherwise, may report an error (typically by |
| 248 | // crashing with a diagnostic), or may return immediately. |
| 249 | void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK(); |
| 250 | |
| 251 | // Mutex::WriterLock() |
| 252 | // Mutex::WriterUnlock() |
| 253 | // Mutex::WriterTryLock() |
| 254 | // |
| 255 | // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`. |
| 256 | // |
| 257 | // These methods may be used (along with the complementary `Reader*()` |
| 258 | // methods) to distingish simple exclusive `Mutex` usage (`Lock()`, |
| 259 | // etc.) from reader/writer lock usage. |
| 260 | void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); } |
| 261 | |
| 262 | void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); } |
| 263 | |
| 264 | bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) { |
| 265 | return this->TryLock(); |
| 266 | } |
| 267 | |
| 268 | // --------------------------------------------------------------------------- |
| 269 | // Conditional Critical Regions |
| 270 | // --------------------------------------------------------------------------- |
| 271 | |
| 272 | // Conditional usage of a `Mutex` can occur using two distinct paradigms: |
| 273 | // |
| 274 | // * Use of `Mutex` member functions with `Condition` objects. |
| 275 | // * Use of the separate `CondVar` abstraction. |
| 276 | // |
| 277 | // In general, prefer use of `Condition` and the `Mutex` member functions |
| 278 | // listed below over `CondVar`. When there are multiple threads waiting on |
| 279 | // distinctly different conditions, however, a battery of `CondVar`s may be |
| 280 | // more efficient. This section discusses use of `Condition` objects. |
| 281 | // |
| 282 | // `Mutex` contains member functions for performing lock operations only under |
| 283 | // certain conditions, of class `Condition`. For correctness, the `Condition` |
| 284 | // must return a boolean that is a pure function, only of state protected by |
| 285 | // the `Mutex`. The condition must be invariant w.r.t. environmental state |
| 286 | // such as thread, cpu id, or time, and must be `noexcept`. The condition will |
| 287 | // always be invoked with the mutex held in at least read mode, so you should |
| 288 | // not block it for long periods or sleep it on a timer. |
| 289 | // |
| 290 | // Since a condition must not depend directly on the current time, use |
| 291 | // `*WithTimeout()` member function variants to make your condition |
| 292 | // effectively true after a given duration, or `*WithDeadline()` variants to |
| 293 | // make your condition effectively true after a given time. |
| 294 | // |
| 295 | // The condition function should have no side-effects aside from debug |
| 296 | // logging; as a special exception, the function may acquire other mutexes |
| 297 | // provided it releases all those that it acquires. (This exception was |
| 298 | // required to allow logging.) |
| 299 | |
| 300 | // Mutex::Await() |
| 301 | // |
| 302 | // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true` |
| 303 | // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the |
| 304 | // same mode in which it was previously held. If the condition is initially |
| 305 | // `true`, `Await()` *may* skip the release/re-acquire step. |
| 306 | // |
| 307 | // `Await()` requires that this thread holds this `Mutex` in some mode. |
| 308 | void Await(const Condition &cond); |
| 309 | |
| 310 | // Mutex::LockWhen() |
| 311 | // Mutex::ReaderLockWhen() |
| 312 | // Mutex::WriterLockWhen() |
| 313 | // |
| 314 | // Blocks until simultaneously both `cond` is `true` and this `Mutex` can |
| 315 | // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is |
| 316 | // logically equivalent to `*Lock(); Await();` though they may have different |
| 317 | // performance characteristics. |
| 318 | void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(); |
| 319 | |
| 320 | void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION(); |
| 321 | |
| 322 | void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| 323 | this->LockWhen(cond); |
| 324 | } |
| 325 | |
| 326 | // --------------------------------------------------------------------------- |
| 327 | // Mutex Variants with Timeouts/Deadlines |
| 328 | // --------------------------------------------------------------------------- |
| 329 | |
| 330 | // Mutex::AwaitWithTimeout() |
| 331 | // Mutex::AwaitWithDeadline() |
| 332 | // |
| 333 | // If `cond` is initially true, do nothing, or act as though `cond` is |
| 334 | // initially false. |
| 335 | // |
| 336 | // If `cond` is initially false, unlock this `Mutex` and block until |
| 337 | // simultaneously: |
| 338 | // - either `cond` is true or the {timeout has expired, deadline has passed} |
| 339 | // and |
| 340 | // - this `Mutex` can be reacquired, |
| 341 | // then reacquire this `Mutex` in the same mode in which it was previously |
| 342 | // held, returning `true` iff `cond` is `true` on return. |
| 343 | // |
| 344 | // Deadlines in the past are equivalent to an immediate deadline. |
| 345 | // Negative timeouts are equivalent to a zero timeout. |
| 346 | // |
| 347 | // This method requires that this thread holds this `Mutex` in some mode. |
| 348 | bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout); |
| 349 | |
| 350 | bool AwaitWithDeadline(const Condition &cond, absl::Time deadline); |
| 351 | |
| 352 | // Mutex::LockWhenWithTimeout() |
| 353 | // Mutex::ReaderLockWhenWithTimeout() |
| 354 | // Mutex::WriterLockWhenWithTimeout() |
| 355 | // |
| 356 | // Blocks until simultaneously both: |
| 357 | // - either `cond` is `true` or the timeout has expired, and |
| 358 | // - this `Mutex` can be acquired, |
| 359 | // then atomically acquires this `Mutex`, returning `true` iff `cond` is |
| 360 | // `true` on return. |
| 361 | // |
| 362 | // Negative timeouts are equivalent to a zero timeout. |
| 363 | bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
| 364 | ABSL_EXCLUSIVE_LOCK_FUNCTION(); |
| 365 | bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
| 366 | ABSL_SHARED_LOCK_FUNCTION(); |
| 367 | bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
| 368 | ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| 369 | return this->LockWhenWithTimeout(cond, timeout); |
| 370 | } |
| 371 | |
| 372 | // Mutex::LockWhenWithDeadline() |
| 373 | // Mutex::ReaderLockWhenWithDeadline() |
| 374 | // Mutex::WriterLockWhenWithDeadline() |
| 375 | // |
| 376 | // Blocks until simultaneously both: |
| 377 | // - either `cond` is `true` or the deadline has been passed, and |
| 378 | // - this `Mutex` can be acquired, |
| 379 | // then atomically acquires this Mutex, returning `true` iff `cond` is `true` |
| 380 | // on return. |
| 381 | // |
| 382 | // Deadlines in the past are equivalent to an immediate deadline. |
| 383 | bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
| 384 | ABSL_EXCLUSIVE_LOCK_FUNCTION(); |
| 385 | bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
| 386 | ABSL_SHARED_LOCK_FUNCTION(); |
| 387 | bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
| 388 | ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| 389 | return this->LockWhenWithDeadline(cond, deadline); |
| 390 | } |
| 391 | |
| 392 | // --------------------------------------------------------------------------- |
| 393 | // Debug Support: Invariant Checking, Deadlock Detection, Logging. |
| 394 | // --------------------------------------------------------------------------- |
| 395 | |
| 396 | // Mutex::EnableInvariantDebugging() |
| 397 | // |
| 398 | // If `invariant`!=null and if invariant debugging has been enabled globally, |
| 399 | // cause `(*invariant)(arg)` to be called at moments when the invariant for |
| 400 | // this `Mutex` should hold (for example: just after acquire, just before |
| 401 | // release). |
| 402 | // |
| 403 | // The routine `invariant` should have no side-effects since it is not |
| 404 | // guaranteed how many times it will be called; it should check the invariant |
| 405 | // and crash if it does not hold. Enabling global invariant debugging may |
| 406 | // substantially reduce `Mutex` performance; it should be set only for |
| 407 | // non-production runs. Optimization options may also disable invariant |
| 408 | // checks. |
| 409 | void EnableInvariantDebugging(void (*invariant)(void *), void *arg); |
| 410 | |
| 411 | // Mutex::EnableDebugLog() |
| 412 | // |
| 413 | // Cause all subsequent uses of this `Mutex` to be logged via |
| 414 | // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous |
| 415 | // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made. |
| 416 | // |
| 417 | // Note: This method substantially reduces `Mutex` performance. |
| 418 | void EnableDebugLog(const char *name); |
| 419 | |
| 420 | // Deadlock detection |
| 421 | |
| 422 | // Mutex::ForgetDeadlockInfo() |
| 423 | // |
| 424 | // Forget any deadlock-detection information previously gathered |
| 425 | // about this `Mutex`. Call this method in debug mode when the lock ordering |
| 426 | // of a `Mutex` changes. |
| 427 | void ForgetDeadlockInfo(); |
| 428 | |
| 429 | // Mutex::AssertNotHeld() |
| 430 | // |
| 431 | // Return immediately if this thread does not hold this `Mutex` in any |
| 432 | // mode; otherwise, may report an error (typically by crashing with a |
| 433 | // diagnostic), or may return immediately. |
| 434 | // |
| 435 | // Currently this check is performed only if all of: |
| 436 | // - in debug mode |
| 437 | // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort |
| 438 | // - number of locks concurrently held by this thread is not large. |
| 439 | // are true. |
| 440 | void AssertNotHeld() const; |
| 441 | |
| 442 | // Special cases. |
| 443 | |
| 444 | // A `MuHow` is a constant that indicates how a lock should be acquired. |
| 445 | // Internal implementation detail. Clients should ignore. |
| 446 | typedef const struct MuHowS *MuHow; |
| 447 | |
| 448 | // Mutex::InternalAttemptToUseMutexInFatalSignalHandler() |
| 449 | // |
| 450 | // Causes the `Mutex` implementation to prepare itself for re-entry caused by |
| 451 | // future use of `Mutex` within a fatal signal handler. This method is |
| 452 | // intended for use only for last-ditch attempts to log crash information. |
| 453 | // It does not guarantee that attempts to use Mutexes within the handler will |
| 454 | // not deadlock; it merely makes other faults less likely. |
| 455 | // |
| 456 | // WARNING: This routine must be invoked from a signal handler, and the |
| 457 | // signal handler must either loop forever or terminate the process. |
| 458 | // Attempts to return from (or `longjmp` out of) the signal handler once this |
| 459 | // call has been made may cause arbitrary program behaviour including |
| 460 | // crashes and deadlocks. |
| 461 | static void InternalAttemptToUseMutexInFatalSignalHandler(); |
| 462 | |
| 463 | private: |
| 464 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| 465 | friend class CondVar; |
| 466 | |
| 467 | synchronization_internal::MutexImpl *impl() { return impl_.get(); } |
| 468 | |
| 469 | synchronization_internal::SynchronizationStorage< |
| 470 | synchronization_internal::MutexImpl> |
| 471 | impl_; |
| 472 | #else |
| 473 | std::atomic<intptr_t> mu_; // The Mutex state. |
| 474 | |
| 475 | // Post()/Wait() versus associated PerThreadSem; in class for required |
| 476 | // friendship with PerThreadSem. |
| 477 | static inline void IncrementSynchSem(Mutex *mu, |
| 478 | base_internal::PerThreadSynch *w); |
| 479 | static inline bool DecrementSynchSem( |
| 480 | Mutex *mu, base_internal::PerThreadSynch *w, |
| 481 | synchronization_internal::KernelTimeout t); |
| 482 | |
| 483 | // slow path acquire |
| 484 | void LockSlowLoop(SynchWaitParams *waitp, int flags); |
| 485 | // wrappers around LockSlowLoop() |
| 486 | bool LockSlowWithDeadline(MuHow how, const Condition *cond, |
| 487 | synchronization_internal::KernelTimeout t, |
| 488 | int flags); |
| 489 | void LockSlow(MuHow how, const Condition *cond, |
| 490 | int flags) ABSL_ATTRIBUTE_COLD; |
| 491 | // slow path release |
| 492 | void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD; |
| 493 | // Common code between Await() and AwaitWithTimeout/Deadline() |
| 494 | bool AwaitCommon(const Condition &cond, |
| 495 | synchronization_internal::KernelTimeout t); |
| 496 | // Attempt to remove thread s from queue. |
| 497 | void TryRemove(base_internal::PerThreadSynch *s); |
| 498 | // Block a thread on mutex. |
| 499 | void Block(base_internal::PerThreadSynch *s); |
| 500 | // Wake a thread; return successor. |
| 501 | base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w); |
| 502 | |
| 503 | friend class CondVar; // for access to Trans()/Fer(). |
| 504 | void Trans(MuHow how); // used for CondVar->Mutex transfer |
| 505 | void Fer( |
| 506 | base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer |
| 507 | #endif |
| 508 | |
| 509 | // Catch the error of writing Mutex when intending MutexLock. |
| 510 | Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit) |
| 511 | |
| 512 | Mutex(const Mutex&) = delete; |
| 513 | Mutex& operator=(const Mutex&) = delete; |
| 514 | }; |
| 515 | |
| 516 | // ----------------------------------------------------------------------------- |
| 517 | // Mutex RAII Wrappers |
| 518 | // ----------------------------------------------------------------------------- |
| 519 | |
| 520 | // MutexLock |
| 521 | // |
| 522 | // `MutexLock` is a helper class, which acquires and releases a `Mutex` via |
| 523 | // RAII. |
| 524 | // |
| 525 | // Example: |
| 526 | // |
| 527 | // Class Foo { |
| 528 | // |
| 529 | // Foo::Bar* Baz() { |
| 530 | // MutexLock l(&lock_); |
| 531 | // ... |
| 532 | // return bar; |
| 533 | // } |
| 534 | // |
| 535 | // private: |
| 536 | // Mutex lock_; |
| 537 | // }; |
| 538 | class ABSL_SCOPED_LOCKABLE MutexLock { |
| 539 | public: |
| 540 | explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { |
| 541 | this->mu_->Lock(); |
| 542 | } |
| 543 | |
| 544 | MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex) |
| 545 | MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex) |
| 546 | MutexLock& operator=(const MutexLock&) = delete; |
| 547 | MutexLock& operator=(MutexLock&&) = delete; |
| 548 | |
| 549 | ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); } |
| 550 | |
| 551 | private: |
| 552 | Mutex *const mu_; |
| 553 | }; |
| 554 | |
| 555 | // ReaderMutexLock |
| 556 | // |
| 557 | // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and |
| 558 | // releases a shared lock on a `Mutex` via RAII. |
| 559 | class ABSL_SCOPED_LOCKABLE ReaderMutexLock { |
| 560 | public: |
| 561 | explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) { |
| 562 | mu->ReaderLock(); |
| 563 | } |
| 564 | |
| 565 | ReaderMutexLock(const ReaderMutexLock&) = delete; |
| 566 | ReaderMutexLock(ReaderMutexLock&&) = delete; |
| 567 | ReaderMutexLock& operator=(const ReaderMutexLock&) = delete; |
| 568 | ReaderMutexLock& operator=(ReaderMutexLock&&) = delete; |
| 569 | |
| 570 | ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); } |
| 571 | |
| 572 | private: |
| 573 | Mutex *const mu_; |
| 574 | }; |
| 575 | |
| 576 | // WriterMutexLock |
| 577 | // |
| 578 | // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and |
| 579 | // releases a write (exclusive) lock on a `Mutex` via RAII. |
| 580 | class ABSL_SCOPED_LOCKABLE WriterMutexLock { |
| 581 | public: |
| 582 | explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| 583 | : mu_(mu) { |
| 584 | mu->WriterLock(); |
| 585 | } |
| 586 | |
| 587 | WriterMutexLock(const WriterMutexLock&) = delete; |
| 588 | WriterMutexLock(WriterMutexLock&&) = delete; |
| 589 | WriterMutexLock& operator=(const WriterMutexLock&) = delete; |
| 590 | WriterMutexLock& operator=(WriterMutexLock&&) = delete; |
| 591 | |
| 592 | ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); } |
| 593 | |
| 594 | private: |
| 595 | Mutex *const mu_; |
| 596 | }; |
| 597 | |
| 598 | // ----------------------------------------------------------------------------- |
| 599 | // Condition |
| 600 | // ----------------------------------------------------------------------------- |
| 601 | // |
| 602 | // As noted above, `Mutex` contains a number of member functions which take a |
| 603 | // `Condition` as an argument; clients can wait for conditions to become `true` |
| 604 | // before attempting to acquire the mutex. These sections are known as |
| 605 | // "condition critical" sections. To use a `Condition`, you simply need to |
| 606 | // construct it, and use within an appropriate `Mutex` member function; |
| 607 | // everything else in the `Condition` class is an implementation detail. |
| 608 | // |
| 609 | // A `Condition` is specified as a function pointer which returns a boolean. |
| 610 | // `Condition` functions should be pure functions -- their results should depend |
| 611 | // only on passed arguments, should not consult any external state (such as |
| 612 | // clocks), and should have no side-effects, aside from debug logging. Any |
| 613 | // objects that the function may access should be limited to those which are |
| 614 | // constant while the mutex is blocked on the condition (e.g. a stack variable), |
| 615 | // or objects of state protected explicitly by the mutex. |
| 616 | // |
| 617 | // No matter which construction is used for `Condition`, the underlying |
| 618 | // function pointer / functor / callable must not throw any |
| 619 | // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in |
| 620 | // the face of a throwing `Condition`. (When Abseil is allowed to depend |
| 621 | // on C++17, these function pointers will be explicitly marked |
| 622 | // `noexcept`; until then this requirement cannot be enforced in the |
| 623 | // type system.) |
| 624 | // |
| 625 | // Note: to use a `Condition`, you need only construct it and pass it within the |
| 626 | // appropriate `Mutex' member function, such as `Mutex::Await()`. |
| 627 | // |
| 628 | // Example: |
| 629 | // |
| 630 | // // assume count_ is not internal reference count |
| 631 | // int count_ GUARDED_BY(mu_); |
| 632 | // |
| 633 | // mu_.LockWhen(Condition(+[](int* count) { return *count == 0; }, |
| 634 | // &count_)); |
| 635 | // |
| 636 | // When multiple threads are waiting on exactly the same condition, make sure |
| 637 | // that they are constructed with the same parameters (same pointer to function |
| 638 | // + arg, or same pointer to object + method), so that the mutex implementation |
| 639 | // can avoid redundantly evaluating the same condition for each thread. |
| 640 | class Condition { |
| 641 | public: |
| 642 | // A Condition that returns the result of "(*func)(arg)" |
| 643 | Condition(bool (*func)(void *), void *arg); |
| 644 | |
| 645 | // Templated version for people who are averse to casts. |
| 646 | // |
| 647 | // To use a lambda, prepend it with unary plus, which converts the lambda |
| 648 | // into a function pointer: |
| 649 | // Condition(+[](T* t) { return ...; }, arg). |
| 650 | // |
| 651 | // Note: lambdas in this case must contain no bound variables. |
| 652 | // |
| 653 | // See class comment for performance advice. |
| 654 | template<typename T> |
| 655 | Condition(bool (*func)(T *), T *arg); |
| 656 | |
| 657 | // Templated version for invoking a method that returns a `bool`. |
| 658 | // |
| 659 | // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates |
| 660 | // `object->Method()`. |
| 661 | // |
| 662 | // Implementation Note: `absl::internal::identity` is used to allow methods to |
| 663 | // come from base classes. A simpler signature like |
| 664 | // `Condition(T*, bool (T::*)())` does not suffice. |
| 665 | template<typename T> |
| 666 | Condition(T *object, bool (absl::internal::identity<T>::type::* method)()); |
| 667 | |
| 668 | // Same as above, for const members |
| 669 | template<typename T> |
| 670 | Condition(const T *object, |
| 671 | bool (absl::internal::identity<T>::type::* method)() const); |
| 672 | |
| 673 | // A Condition that returns the value of `*cond` |
| 674 | explicit Condition(const bool *cond); |
| 675 | |
| 676 | // Templated version for invoking a functor that returns a `bool`. |
| 677 | // This approach accepts pointers to non-mutable lambdas, `std::function`, |
| 678 | // the result of` std::bind` and user-defined functors that define |
| 679 | // `bool F::operator()() const`. |
| 680 | // |
| 681 | // Example: |
| 682 | // |
| 683 | // auto reached = [this, current]() { |
| 684 | // mu_.AssertReaderHeld(); // For annotalysis. |
| 685 | // return processed_ >= current; |
| 686 | // }; |
| 687 | // mu_.Await(Condition(&reached)); |
| 688 | |
| 689 | // See class comment for performance advice. In particular, if there |
| 690 | // might be more than one waiter for the same condition, make sure |
| 691 | // that all waiters construct the condition with the same pointers. |
| 692 | |
| 693 | // Implementation note: The second template parameter ensures that this |
| 694 | // constructor doesn't participate in overload resolution if T doesn't have |
| 695 | // `bool operator() const`. |
| 696 | template <typename T, typename E = decltype( |
| 697 | static_cast<bool (T::*)() const>(&T::operator()))> |
| 698 | explicit Condition(const T *obj) |
| 699 | : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {} |
| 700 | |
| 701 | // A Condition that always returns `true`. |
| 702 | static const Condition kTrue; |
| 703 | |
| 704 | // Evaluates the condition. |
| 705 | bool Eval() const; |
| 706 | |
| 707 | // Returns `true` if the two conditions are guaranteed to return the same |
| 708 | // value if evaluated at the same time, `false` if the evaluation *may* return |
| 709 | // different results. |
| 710 | // |
| 711 | // Two `Condition` values are guaranteed equal if both their `func` and `arg` |
| 712 | // components are the same. A null pointer is equivalent to a `true` |
| 713 | // condition. |
| 714 | static bool GuaranteedEqual(const Condition *a, const Condition *b); |
| 715 | |
| 716 | private: |
| 717 | typedef bool (*InternalFunctionType)(void * arg); |
| 718 | typedef bool (Condition::*InternalMethodType)(); |
| 719 | typedef bool (*InternalMethodCallerType)(void * arg, |
| 720 | InternalMethodType internal_method); |
| 721 | |
| 722 | bool (*eval_)(const Condition*); // Actual evaluator |
| 723 | InternalFunctionType function_; // function taking pointer returning bool |
| 724 | InternalMethodType method_; // method returning bool |
| 725 | void *arg_; // arg of function_ or object of method_ |
| 726 | |
| 727 | Condition(); // null constructor used only to create kTrue |
| 728 | |
| 729 | // Various functions eval_ can point to: |
| 730 | static bool CallVoidPtrFunction(const Condition*); |
| 731 | template <typename T> static bool CastAndCallFunction(const Condition* c); |
| 732 | template <typename T> static bool CastAndCallMethod(const Condition* c); |
| 733 | }; |
| 734 | |
| 735 | // ----------------------------------------------------------------------------- |
| 736 | // CondVar |
| 737 | // ----------------------------------------------------------------------------- |
| 738 | // |
| 739 | // A condition variable, reflecting state evaluated separately outside of the |
| 740 | // `Mutex` object, which can be signaled to wake callers. |
| 741 | // This class is not normally needed; use `Mutex` member functions such as |
| 742 | // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases |
| 743 | // with many threads and many conditions, `CondVar` may be faster. |
| 744 | // |
| 745 | // The implementation may deliver signals to any condition variable at |
| 746 | // any time, even when no call to `Signal()` or `SignalAll()` is made; as a |
| 747 | // result, upon being awoken, you must check the logical condition you have |
| 748 | // been waiting upon. |
| 749 | // |
| 750 | // Examples: |
| 751 | // |
| 752 | // Usage for a thread waiting for some condition C protected by mutex mu: |
| 753 | // mu.Lock(); |
| 754 | // while (!C) { cv->Wait(&mu); } // releases and reacquires mu |
| 755 | // // C holds; process data |
| 756 | // mu.Unlock(); |
| 757 | // |
| 758 | // Usage to wake T is: |
| 759 | // mu.Lock(); |
| 760 | // // process data, possibly establishing C |
| 761 | // if (C) { cv->Signal(); } |
| 762 | // mu.Unlock(); |
| 763 | // |
| 764 | // If C may be useful to more than one waiter, use `SignalAll()` instead of |
| 765 | // `Signal()`. |
| 766 | // |
| 767 | // With this implementation it is efficient to use `Signal()/SignalAll()` inside |
| 768 | // the locked region; this usage can make reasoning about your program easier. |
| 769 | // |
| 770 | class CondVar { |
| 771 | public: |
| 772 | CondVar(); |
| 773 | ~CondVar(); |
| 774 | |
| 775 | // CondVar::Wait() |
| 776 | // |
| 777 | // Atomically releases a `Mutex` and blocks on this condition variable. |
| 778 | // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| 779 | // spurious wakeup), then reacquires the `Mutex` and returns. |
| 780 | // |
| 781 | // Requires and ensures that the current thread holds the `Mutex`. |
| 782 | void Wait(Mutex *mu); |
| 783 | |
| 784 | // CondVar::WaitWithTimeout() |
| 785 | // |
| 786 | // Atomically releases a `Mutex` and blocks on this condition variable. |
| 787 | // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| 788 | // spurious wakeup), or until the timeout has expired, then reacquires |
| 789 | // the `Mutex` and returns. |
| 790 | // |
| 791 | // Returns true if the timeout has expired without this `CondVar` |
| 792 | // being signalled in any manner. If both the timeout has expired |
| 793 | // and this `CondVar` has been signalled, the implementation is free |
| 794 | // to return `true` or `false`. |
| 795 | // |
| 796 | // Requires and ensures that the current thread holds the `Mutex`. |
| 797 | bool WaitWithTimeout(Mutex *mu, absl::Duration timeout); |
| 798 | |
| 799 | // CondVar::WaitWithDeadline() |
| 800 | // |
| 801 | // Atomically releases a `Mutex` and blocks on this condition variable. |
| 802 | // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| 803 | // spurious wakeup), or until the deadline has passed, then reacquires |
| 804 | // the `Mutex` and returns. |
| 805 | // |
| 806 | // Deadlines in the past are equivalent to an immediate deadline. |
| 807 | // |
| 808 | // Returns true if the deadline has passed without this `CondVar` |
| 809 | // being signalled in any manner. If both the deadline has passed |
| 810 | // and this `CondVar` has been signalled, the implementation is free |
| 811 | // to return `true` or `false`. |
| 812 | // |
| 813 | // Requires and ensures that the current thread holds the `Mutex`. |
| 814 | bool WaitWithDeadline(Mutex *mu, absl::Time deadline); |
| 815 | |
| 816 | // CondVar::Signal() |
| 817 | // |
| 818 | // Signal this `CondVar`; wake at least one waiter if one exists. |
| 819 | void Signal(); |
| 820 | |
| 821 | // CondVar::SignalAll() |
| 822 | // |
| 823 | // Signal this `CondVar`; wake all waiters. |
| 824 | void SignalAll(); |
| 825 | |
| 826 | // CondVar::EnableDebugLog() |
| 827 | // |
| 828 | // Causes all subsequent uses of this `CondVar` to be logged via |
| 829 | // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`. |
| 830 | // Note: this method substantially reduces `CondVar` performance. |
| 831 | void EnableDebugLog(const char *name); |
| 832 | |
| 833 | private: |
| 834 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| 835 | synchronization_internal::CondVarImpl *impl() { return impl_.get(); } |
| 836 | synchronization_internal::SynchronizationStorage< |
| 837 | synchronization_internal::CondVarImpl> |
| 838 | impl_; |
| 839 | #else |
| 840 | bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t); |
| 841 | void Remove(base_internal::PerThreadSynch *s); |
| 842 | void Wakeup(base_internal::PerThreadSynch *w); |
| 843 | std::atomic<intptr_t> cv_; // Condition variable state. |
| 844 | #endif |
| 845 | CondVar(const CondVar&) = delete; |
| 846 | CondVar& operator=(const CondVar&) = delete; |
| 847 | }; |
| 848 | |
| 849 | |
| 850 | // Variants of MutexLock. |
| 851 | // |
| 852 | // If you find yourself using one of these, consider instead using |
| 853 | // Mutex::Unlock() and/or if-statements for clarity. |
| 854 | |
| 855 | // MutexLockMaybe |
| 856 | // |
| 857 | // MutexLockMaybe is like MutexLock, but is a no-op when mu is null. |
| 858 | class ABSL_SCOPED_LOCKABLE MutexLockMaybe { |
| 859 | public: |
| 860 | explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| 861 | : mu_(mu) { |
| 862 | if (this->mu_ != nullptr) { |
| 863 | this->mu_->Lock(); |
| 864 | } |
| 865 | } |
| 866 | ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() { |
| 867 | if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
| 868 | } |
| 869 | |
| 870 | private: |
| 871 | Mutex *const mu_; |
| 872 | MutexLockMaybe(const MutexLockMaybe&) = delete; |
| 873 | MutexLockMaybe(MutexLockMaybe&&) = delete; |
| 874 | MutexLockMaybe& operator=(const MutexLockMaybe&) = delete; |
| 875 | MutexLockMaybe& operator=(MutexLockMaybe&&) = delete; |
| 876 | }; |
| 877 | |
| 878 | // ReleasableMutexLock |
| 879 | // |
| 880 | // ReleasableMutexLock is like MutexLock, but permits `Release()` of its |
| 881 | // mutex before destruction. `Release()` may be called at most once. |
| 882 | class ABSL_SCOPED_LOCKABLE ReleasableMutexLock { |
| 883 | public: |
| 884 | explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| 885 | : mu_(mu) { |
| 886 | this->mu_->Lock(); |
| 887 | } |
| 888 | ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() { |
| 889 | if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
| 890 | } |
| 891 | |
| 892 | void Release() ABSL_UNLOCK_FUNCTION(); |
| 893 | |
| 894 | private: |
| 895 | Mutex *mu_; |
| 896 | ReleasableMutexLock(const ReleasableMutexLock&) = delete; |
| 897 | ReleasableMutexLock(ReleasableMutexLock&&) = delete; |
| 898 | ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete; |
| 899 | ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete; |
| 900 | }; |
| 901 | |
| 902 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| 903 | inline constexpr Mutex::Mutex(absl::ConstInitType) : impl_(absl::kConstInit) {} |
| 904 | |
| 905 | #else |
| 906 | inline Mutex::Mutex() : mu_(0) { |
| 907 | ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static); |
| 908 | } |
| 909 | |
| 910 | inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {} |
| 911 | |
| 912 | inline CondVar::CondVar() : cv_(0) {} |
| 913 | #endif |
| 914 | |
| 915 | // static |
| 916 | template <typename T> |
| 917 | bool Condition::CastAndCallMethod(const Condition *c) { |
| 918 | typedef bool (T::*MemberType)(); |
| 919 | MemberType rm = reinterpret_cast<MemberType>(c->method_); |
| 920 | T *x = static_cast<T *>(c->arg_); |
| 921 | return (x->*rm)(); |
| 922 | } |
| 923 | |
| 924 | // static |
| 925 | template <typename T> |
| 926 | bool Condition::CastAndCallFunction(const Condition *c) { |
| 927 | typedef bool (*FuncType)(T *); |
| 928 | FuncType fn = reinterpret_cast<FuncType>(c->function_); |
| 929 | T *x = static_cast<T *>(c->arg_); |
| 930 | return (*fn)(x); |
| 931 | } |
| 932 | |
| 933 | template <typename T> |
| 934 | inline Condition::Condition(bool (*func)(T *), T *arg) |
| 935 | : eval_(&CastAndCallFunction<T>), |
| 936 | function_(reinterpret_cast<InternalFunctionType>(func)), |
| 937 | method_(nullptr), |
| 938 | arg_(const_cast<void *>(static_cast<const void *>(arg))) {} |
| 939 | |
| 940 | template <typename T> |
| 941 | inline Condition::Condition(T *object, |
| 942 | bool (absl::internal::identity<T>::type::*method)()) |
| 943 | : eval_(&CastAndCallMethod<T>), |
| 944 | function_(nullptr), |
| 945 | method_(reinterpret_cast<InternalMethodType>(method)), |
| 946 | arg_(object) {} |
| 947 | |
| 948 | template <typename T> |
| 949 | inline Condition::Condition(const T *object, |
| 950 | bool (absl::internal::identity<T>::type::*method)() |
| 951 | const) |
| 952 | : eval_(&CastAndCallMethod<T>), |
| 953 | function_(nullptr), |
| 954 | method_(reinterpret_cast<InternalMethodType>(method)), |
| 955 | arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {} |
| 956 | |
| 957 | // Register a hook for profiling support. |
| 958 | // |
| 959 | // The function pointer registered here will be called whenever a mutex is |
| 960 | // contended. The callback is given the absl/base/cycleclock.h timestamp when |
| 961 | // waiting began. |
| 962 | // |
| 963 | // Calls to this function do not race or block, but there is no ordering |
| 964 | // guaranteed between calls to this function and call to the provided hook. |
| 965 | // In particular, the previously registered hook may still be called for some |
| 966 | // time after this function returns. |
| 967 | void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)); |
| 968 | |
| 969 | // Register a hook for Mutex tracing. |
| 970 | // |
| 971 | // The function pointer registered here will be called whenever a mutex is |
| 972 | // contended. The callback is given an opaque handle to the contended mutex, |
| 973 | // an event name, and the number of wait cycles (as measured by |
| 974 | // //absl/base/internal/cycleclock.h, and which may not be real |
| 975 | // "cycle" counts.) |
| 976 | // |
| 977 | // The only event name currently sent is "slow release". |
| 978 | // |
| 979 | // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
| 980 | void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj, |
| 981 | int64_t wait_cycles)); |
| 982 | |
| 983 | // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer() |
| 984 | // into a single interface, since they are only ever called in pairs. |
| 985 | |
| 986 | // Register a hook for CondVar tracing. |
| 987 | // |
| 988 | // The function pointer registered here will be called here on various CondVar |
| 989 | // events. The callback is given an opaque handle to the CondVar object and |
| 990 | // a string identifying the event. This is thread-safe, but only a single |
| 991 | // tracer can be registered. |
| 992 | // |
| 993 | // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and |
| 994 | // "SignalAll wakeup". |
| 995 | // |
| 996 | // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
| 997 | void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)); |
| 998 | |
| 999 | // Register a hook for symbolizing stack traces in deadlock detector reports. |
| 1000 | // |
| 1001 | // 'pc' is the program counter being symbolized, 'out' is the buffer to write |
| 1002 | // into, and 'out_size' is the size of the buffer. This function can return |
| 1003 | // false if symbolizing failed, or true if a null-terminated symbol was written |
| 1004 | // to 'out.' |
| 1005 | // |
| 1006 | // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
| 1007 | // |
| 1008 | // DEPRECATED: The default symbolizer function is absl::Symbolize() and the |
| 1009 | // ability to register a different hook for symbolizing stack traces will be |
| 1010 | // removed on or after 2023-05-01. |
| 1011 | ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed " |
| 1012 | "on or after 2023-05-01") |
| 1013 | void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)); |
| 1014 | |
| 1015 | // EnableMutexInvariantDebugging() |
| 1016 | // |
| 1017 | // Enable or disable global support for Mutex invariant debugging. If enabled, |
| 1018 | // then invariant predicates can be registered per-Mutex for debug checking. |
| 1019 | // See Mutex::EnableInvariantDebugging(). |
| 1020 | void EnableMutexInvariantDebugging(bool enabled); |
| 1021 | |
| 1022 | // When in debug mode, and when the feature has been enabled globally, the |
| 1023 | // implementation will keep track of lock ordering and complain (or optionally |
| 1024 | // crash) if a cycle is detected in the acquired-before graph. |
| 1025 | |
| 1026 | // Possible modes of operation for the deadlock detector in debug mode. |
| 1027 | enum class OnDeadlockCycle { |
| 1028 | kIgnore, // Neither report on nor attempt to track cycles in lock ordering |
| 1029 | kReport, // Report lock cycles to stderr when detected |
| 1030 | kAbort, // Report lock cycles to stderr when detected, then abort |
| 1031 | }; |
| 1032 | |
| 1033 | // SetMutexDeadlockDetectionMode() |
| 1034 | // |
| 1035 | // Enable or disable global support for detection of potential deadlocks |
| 1036 | // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of |
| 1037 | // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph |
| 1038 | // will be maintained internally, and detected cycles will be reported in |
| 1039 | // the manner chosen here. |
| 1040 | void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode); |
| 1041 | |
| 1042 | } // namespace absl |
| 1043 | |
| 1044 | // In some build configurations we pass --detect-odr-violations to the |
| 1045 | // gold linker. This causes it to flag weak symbol overrides as ODR |
| 1046 | // violations. Because ODR only applies to C++ and not C, |
| 1047 | // --detect-odr-violations ignores symbols not mangled with C++ names. |
| 1048 | // By changing our extension points to be extern "C", we dodge this |
| 1049 | // check. |
| 1050 | extern "C" { |
| 1051 | void AbslInternalMutexYield(); |
| 1052 | } // extern "C" |
| 1053 | |
| 1054 | #endif // ABSL_SYNCHRONIZATION_MUTEX_H_ |