Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef ABSL_RANDOM_ZIPF_DISTRIBUTION_H_ |
| 16 | #define ABSL_RANDOM_ZIPF_DISTRIBUTION_H_ |
| 17 | |
| 18 | #include <cassert> |
| 19 | #include <cmath> |
| 20 | #include <istream> |
| 21 | #include <limits> |
| 22 | #include <ostream> |
| 23 | #include <type_traits> |
| 24 | |
| 25 | #include "absl/random/internal/iostream_state_saver.h" |
| 26 | #include "absl/random/uniform_real_distribution.h" |
| 27 | |
| 28 | namespace absl { |
| 29 | |
| 30 | // absl::zipf_distribution produces random integer-values in the range [0, k], |
| 31 | // distributed according to the discrete probability function: |
| 32 | // |
| 33 | // P(x) = (v + x) ^ -q |
| 34 | // |
| 35 | // The parameter `v` must be greater than 0 and the parameter `q` must be |
| 36 | // greater than 1. If either of these parameters take invalid values then the |
| 37 | // behavior is undefined. |
| 38 | // |
| 39 | // IntType is the result_type generated by the generator. It must be of integral |
| 40 | // type; a static_assert ensures this is the case. |
| 41 | // |
| 42 | // The implementation is based on W.Hormann, G.Derflinger: |
| 43 | // |
| 44 | // "Rejection-Inversion to Generate Variates from Monotone Discrete |
| 45 | // Distributions" |
| 46 | // |
| 47 | // http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz |
| 48 | // |
| 49 | template <typename IntType = int> |
| 50 | class zipf_distribution { |
| 51 | public: |
| 52 | using result_type = IntType; |
| 53 | |
| 54 | class param_type { |
| 55 | public: |
| 56 | using distribution_type = zipf_distribution; |
| 57 | |
| 58 | // Preconditions: k > 0, v > 0, q > 1 |
| 59 | // The precondidtions are validated when NDEBUG is not defined via |
| 60 | // a pair of assert() directives. |
| 61 | // If NDEBUG is defined and either or both of these parameters take invalid |
| 62 | // values, the behavior of the class is undefined. |
| 63 | explicit param_type(result_type k = (std::numeric_limits<IntType>::max)(), |
| 64 | double q = 2.0, double v = 1.0); |
| 65 | |
| 66 | result_type k() const { return k_; } |
| 67 | double q() const { return q_; } |
| 68 | double v() const { return v_; } |
| 69 | |
| 70 | friend bool operator==(const param_type& a, const param_type& b) { |
| 71 | return a.k_ == b.k_ && a.q_ == b.q_ && a.v_ == b.v_; |
| 72 | } |
| 73 | friend bool operator!=(const param_type& a, const param_type& b) { |
| 74 | return !(a == b); |
| 75 | } |
| 76 | |
| 77 | private: |
| 78 | friend class zipf_distribution; |
| 79 | inline double h(double x) const; |
| 80 | inline double hinv(double x) const; |
| 81 | inline double compute_s() const; |
| 82 | inline double pow_negative_q(double x) const; |
| 83 | |
| 84 | // Parameters here are exactly the same as the parameters of Algorithm ZRI |
| 85 | // in the paper. |
| 86 | IntType k_; |
| 87 | double q_; |
| 88 | double v_; |
| 89 | |
| 90 | double one_minus_q_; // 1-q |
| 91 | double s_; |
| 92 | double one_minus_q_inv_; // 1 / 1-q |
| 93 | double hxm_; // h(k + 0.5) |
| 94 | double hx0_minus_hxm_; // h(x0) - h(k + 0.5) |
| 95 | |
| 96 | static_assert(std::is_integral<IntType>::value, |
| 97 | "Class-template absl::zipf_distribution<> must be " |
| 98 | "parameterized using an integral type."); |
| 99 | }; |
| 100 | |
| 101 | zipf_distribution() |
| 102 | : zipf_distribution((std::numeric_limits<IntType>::max)()) {} |
| 103 | |
| 104 | explicit zipf_distribution(result_type k, double q = 2.0, double v = 1.0) |
| 105 | : param_(k, q, v) {} |
| 106 | |
| 107 | explicit zipf_distribution(const param_type& p) : param_(p) {} |
| 108 | |
| 109 | void reset() {} |
| 110 | |
| 111 | template <typename URBG> |
| 112 | result_type operator()(URBG& g) { // NOLINT(runtime/references) |
| 113 | return (*this)(g, param_); |
| 114 | } |
| 115 | |
| 116 | template <typename URBG> |
| 117 | result_type operator()(URBG& g, // NOLINT(runtime/references) |
| 118 | const param_type& p); |
| 119 | |
| 120 | result_type k() const { return param_.k(); } |
| 121 | double q() const { return param_.q(); } |
| 122 | double v() const { return param_.v(); } |
| 123 | |
| 124 | param_type param() const { return param_; } |
| 125 | void param(const param_type& p) { param_ = p; } |
| 126 | |
| 127 | result_type(min)() const { return 0; } |
| 128 | result_type(max)() const { return k(); } |
| 129 | |
| 130 | friend bool operator==(const zipf_distribution& a, |
| 131 | const zipf_distribution& b) { |
| 132 | return a.param_ == b.param_; |
| 133 | } |
| 134 | friend bool operator!=(const zipf_distribution& a, |
| 135 | const zipf_distribution& b) { |
| 136 | return a.param_ != b.param_; |
| 137 | } |
| 138 | |
| 139 | private: |
| 140 | param_type param_; |
| 141 | }; |
| 142 | |
| 143 | // -------------------------------------------------------------------------- |
| 144 | // Implementation details follow |
| 145 | // -------------------------------------------------------------------------- |
| 146 | |
| 147 | template <typename IntType> |
| 148 | zipf_distribution<IntType>::param_type::param_type( |
| 149 | typename zipf_distribution<IntType>::result_type k, double q, double v) |
| 150 | : k_(k), q_(q), v_(v), one_minus_q_(1 - q) { |
| 151 | assert(q > 1); |
| 152 | assert(v > 0); |
| 153 | assert(k > 0); |
| 154 | one_minus_q_inv_ = 1 / one_minus_q_; |
| 155 | |
| 156 | // Setup for the ZRI algorithm (pg 17 of the paper). |
| 157 | // Compute: h(i max) => h(k + 0.5) |
| 158 | constexpr double kMax = 18446744073709549568.0; |
| 159 | double kd = static_cast<double>(k); |
| 160 | // TODO(absl-team): Determine if this check is needed, and if so, add a test |
| 161 | // that fails for k > kMax |
| 162 | if (kd > kMax) { |
| 163 | // Ensure that our maximum value is capped to a value which will |
| 164 | // round-trip back through double. |
| 165 | kd = kMax; |
| 166 | } |
| 167 | hxm_ = h(kd + 0.5); |
| 168 | |
| 169 | // Compute: h(0) |
| 170 | const bool use_precomputed = (v == 1.0 && q == 2.0); |
| 171 | const double h0x5 = use_precomputed ? (-1.0 / 1.5) // exp(-log(1.5)) |
| 172 | : h(0.5); |
| 173 | const double elogv_q = (v_ == 1.0) ? 1 : pow_negative_q(v_); |
| 174 | |
| 175 | // h(0) = h(0.5) - exp(log(v) * -q) |
| 176 | hx0_minus_hxm_ = (h0x5 - elogv_q) - hxm_; |
| 177 | |
| 178 | // And s |
| 179 | s_ = use_precomputed ? 0.46153846153846123 : compute_s(); |
| 180 | } |
| 181 | |
| 182 | template <typename IntType> |
| 183 | double zipf_distribution<IntType>::param_type::h(double x) const { |
| 184 | // std::exp(one_minus_q_ * std::log(v_ + x)) * one_minus_q_inv_; |
| 185 | x += v_; |
| 186 | return (one_minus_q_ == -1.0) |
| 187 | ? (-1.0 / x) // -exp(-log(x)) |
| 188 | : (std::exp(std::log(x) * one_minus_q_) * one_minus_q_inv_); |
| 189 | } |
| 190 | |
| 191 | template <typename IntType> |
| 192 | double zipf_distribution<IntType>::param_type::hinv(double x) const { |
| 193 | // std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)) - v_; |
| 194 | return -v_ + ((one_minus_q_ == -1.0) |
| 195 | ? (-1.0 / x) // exp(-log(-x)) |
| 196 | : std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x))); |
| 197 | } |
| 198 | |
| 199 | template <typename IntType> |
| 200 | double zipf_distribution<IntType>::param_type::compute_s() const { |
| 201 | // 1 - hinv(h(1.5) - std::exp(std::log(v_ + 1) * -q_)); |
| 202 | return 1.0 - hinv(h(1.5) - pow_negative_q(v_ + 1.0)); |
| 203 | } |
| 204 | |
| 205 | template <typename IntType> |
| 206 | double zipf_distribution<IntType>::param_type::pow_negative_q(double x) const { |
| 207 | // std::exp(std::log(x) * -q_); |
| 208 | return q_ == 2.0 ? (1.0 / (x * x)) : std::exp(std::log(x) * -q_); |
| 209 | } |
| 210 | |
| 211 | template <typename IntType> |
| 212 | template <typename URBG> |
| 213 | typename zipf_distribution<IntType>::result_type |
| 214 | zipf_distribution<IntType>::operator()( |
| 215 | URBG& g, const param_type& p) { // NOLINT(runtime/references) |
| 216 | absl::uniform_real_distribution<double> uniform_double; |
| 217 | double k; |
| 218 | for (;;) { |
| 219 | const double v = uniform_double(g); |
| 220 | const double u = p.hxm_ + v * p.hx0_minus_hxm_; |
| 221 | const double x = p.hinv(u); |
| 222 | k = rint(x); // std::floor(x + 0.5); |
| 223 | if (k > p.k()) continue; // reject k > max_k |
| 224 | if (k - x <= p.s_) break; |
| 225 | const double h = p.h(k + 0.5); |
| 226 | const double r = p.pow_negative_q(p.v_ + k); |
| 227 | if (u >= h - r) break; |
| 228 | } |
| 229 | IntType ki = static_cast<IntType>(k); |
| 230 | assert(ki <= p.k_); |
| 231 | return ki; |
| 232 | } |
| 233 | |
| 234 | template <typename CharT, typename Traits, typename IntType> |
| 235 | std::basic_ostream<CharT, Traits>& operator<<( |
| 236 | std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| 237 | const zipf_distribution<IntType>& x) { |
| 238 | using stream_type = |
| 239 | typename random_internal::stream_format_type<IntType>::type; |
| 240 | auto saver = random_internal::make_ostream_state_saver(os); |
| 241 | os.precision(random_internal::stream_precision_helper<double>::kPrecision); |
| 242 | os << static_cast<stream_type>(x.k()) << os.fill() << x.q() << os.fill() |
| 243 | << x.v(); |
| 244 | return os; |
| 245 | } |
| 246 | |
| 247 | template <typename CharT, typename Traits, typename IntType> |
| 248 | std::basic_istream<CharT, Traits>& operator>>( |
| 249 | std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| 250 | zipf_distribution<IntType>& x) { // NOLINT(runtime/references) |
| 251 | using result_type = typename zipf_distribution<IntType>::result_type; |
| 252 | using param_type = typename zipf_distribution<IntType>::param_type; |
| 253 | using stream_type = |
| 254 | typename random_internal::stream_format_type<IntType>::type; |
| 255 | stream_type k; |
| 256 | double q; |
| 257 | double v; |
| 258 | |
| 259 | auto saver = random_internal::make_istream_state_saver(is); |
| 260 | is >> k >> q >> v; |
| 261 | if (!is.fail()) { |
| 262 | x.param(param_type(static_cast<result_type>(k), q, v)); |
| 263 | } |
| 264 | return is; |
| 265 | } |
| 266 | |
| 267 | } // namespace absl |
| 268 | |
| 269 | #endif // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_ |