Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the"License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an"AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate |
| 16 | // symbols from arbitrary system and other headers, since it may be built |
| 17 | // with different flags from other targets, using different levels of |
| 18 | // optimization, potentially introducing ODR violations. |
| 19 | |
| 20 | #include "absl/random/internal/randen_detect.h" |
| 21 | |
| 22 | #include <cstdint> |
| 23 | #include <cstring> |
| 24 | |
| 25 | #include "absl/random/internal/platform.h" |
| 26 | |
| 27 | #if defined(ABSL_ARCH_X86_64) |
| 28 | #define ABSL_INTERNAL_USE_X86_CPUID |
| 29 | #elif defined(ABSL_ARCH_PPC) || defined(ABSL_ARCH_ARM) || \ |
| 30 | defined(ABSL_ARCH_AARCH64) |
| 31 | #if defined(__ANDROID__) |
| 32 | #define ABSL_INTERNAL_USE_ANDROID_GETAUXVAL |
| 33 | #define ABSL_INTERNAL_USE_GETAUXVAL |
| 34 | #elif defined(__linux__) |
| 35 | #define ABSL_INTERNAL_USE_LINUX_GETAUXVAL |
| 36 | #define ABSL_INTERNAL_USE_GETAUXVAL |
| 37 | #endif |
| 38 | #endif |
| 39 | |
| 40 | #if defined(ABSL_INTERNAL_USE_X86_CPUID) |
| 41 | #if defined(_WIN32) || defined(_WIN64) |
| 42 | #include <intrin.h> // NOLINT(build/include_order) |
| 43 | #pragma intrinsic(__cpuid) |
| 44 | #else |
| 45 | // MSVC-equivalent __cpuid intrinsic function. |
| 46 | static void __cpuid(int cpu_info[4], int info_type) { |
| 47 | __asm__ volatile("cpuid \n\t" |
| 48 | : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), |
| 49 | "=d"(cpu_info[3]) |
| 50 | : "a"(info_type), "c"(0)); |
| 51 | } |
| 52 | #endif |
| 53 | #endif // ABSL_INTERNAL_USE_X86_CPUID |
| 54 | |
| 55 | // On linux, just use the c-library getauxval call. |
| 56 | #if defined(ABSL_INTERNAL_USE_LINUX_GETAUXVAL) |
| 57 | |
| 58 | extern "C" unsigned long getauxval(unsigned long type); // NOLINT(runtime/int) |
| 59 | |
| 60 | static uint32_t GetAuxval(uint32_t hwcap_type) { |
| 61 | return static_cast<uint32_t>(getauxval(hwcap_type)); |
| 62 | } |
| 63 | |
| 64 | #endif |
| 65 | |
| 66 | // On android, probe the system's C library for getauxval(). |
| 67 | // This is the same technique used by the android NDK cpu features library |
| 68 | // as well as the google open-source cpu_features library. |
| 69 | // |
| 70 | // TODO(absl-team): Consider implementing a fallback of directly reading |
| 71 | // /proc/self/auxval. |
| 72 | #if defined(ABSL_INTERNAL_USE_ANDROID_GETAUXVAL) |
| 73 | #include <dlfcn.h> |
| 74 | |
| 75 | static uint32_t GetAuxval(uint32_t hwcap_type) { |
| 76 | // NOLINTNEXTLINE(runtime/int) |
| 77 | typedef unsigned long (*getauxval_func_t)(unsigned long); |
| 78 | |
| 79 | dlerror(); // Cleaning error state before calling dlopen. |
| 80 | void* libc_handle = dlopen("libc.so", RTLD_NOW); |
| 81 | if (!libc_handle) { |
| 82 | return 0; |
| 83 | } |
| 84 | uint32_t result = 0; |
| 85 | void* sym = dlsym(libc_handle, "getauxval"); |
| 86 | if (sym) { |
| 87 | getauxval_func_t func; |
| 88 | memcpy(&func, &sym, sizeof(func)); |
| 89 | result = static_cast<uint32_t>((*func)(hwcap_type)); |
| 90 | } |
| 91 | dlclose(libc_handle); |
| 92 | return result; |
| 93 | } |
| 94 | |
| 95 | #endif |
| 96 | |
| 97 | namespace absl { |
| 98 | namespace random_internal { |
| 99 | |
| 100 | // The default return at the end of the function might be unreachable depending |
| 101 | // on the configuration. Ignore that warning. |
| 102 | #if defined(__clang__) |
| 103 | #pragma clang diagnostic push |
| 104 | #pragma clang diagnostic ignored "-Wunreachable-code-return" |
| 105 | #endif |
| 106 | |
| 107 | // CPUSupportsRandenHwAes returns whether the CPU is a microarchitecture |
| 108 | // which supports the crpyto/aes instructions or extensions necessary to use the |
| 109 | // accelerated RandenHwAes implementation. |
| 110 | // |
| 111 | // 1. For x86 it is sufficient to use the CPUID instruction to detect whether |
| 112 | // the cpu supports AES instructions. Done. |
| 113 | // |
| 114 | // Fon non-x86 it is much more complicated. |
| 115 | // |
| 116 | // 2. When ABSL_INTERNAL_USE_GETAUXVAL is defined, use getauxval() (either |
| 117 | // the direct c-library version, or the android probing version which loads |
| 118 | // libc), and read the hardware capability bits. |
| 119 | // This is based on the technique used by boringssl uses to detect |
| 120 | // cpu capabilities, and should allow us to enable crypto in the android |
| 121 | // builds where it is supported. |
| 122 | // |
| 123 | // 3. Use the default for the compiler architecture. |
| 124 | // |
| 125 | |
| 126 | bool CPUSupportsRandenHwAes() { |
| 127 | #if defined(ABSL_INTERNAL_USE_X86_CPUID) |
| 128 | // 1. For x86: Use CPUID to detect the required AES instruction set. |
| 129 | int regs[4]; |
| 130 | __cpuid(reinterpret_cast<int*>(regs), 1); |
| 131 | return regs[2] & (1 << 25); // AES |
| 132 | |
| 133 | #elif defined(ABSL_INTERNAL_USE_GETAUXVAL) |
| 134 | // 2. Use getauxval() to read the hardware bits and determine |
| 135 | // cpu capabilities. |
| 136 | |
| 137 | #define AT_HWCAP 16 |
| 138 | #define AT_HWCAP2 26 |
| 139 | #if defined(ABSL_ARCH_PPC) |
| 140 | // For Power / PPC: Expect that the cpu supports VCRYPTO |
| 141 | // See https://members.openpowerfoundation.org/document/dl/576 |
| 142 | // VCRYPTO should be present in POWER8 >= 2.07. |
| 143 | // Uses Linux kernel constants from arch/powerpc/include/uapi/asm/cputable.h |
| 144 | static const uint32_t kVCRYPTO = 0x02000000; |
| 145 | const uint32_t hwcap = GetAuxval(AT_HWCAP2); |
| 146 | return (hwcap & kVCRYPTO) != 0; |
| 147 | |
| 148 | #elif defined(ABSL_ARCH_ARM) |
| 149 | // For ARM: Require crypto+neon |
| 150 | // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500f/CIHBIBBA.html |
| 151 | // Uses Linux kernel constants from arch/arm64/include/asm/hwcap.h |
| 152 | static const uint32_t kNEON = 1 << 12; |
| 153 | uint32_t hwcap = GetAuxval(AT_HWCAP); |
| 154 | if ((hwcap & kNEON) == 0) { |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | // And use it again to detect AES. |
| 159 | static const uint32_t kAES = 1 << 0; |
| 160 | const uint32_t hwcap2 = GetAuxval(AT_HWCAP2); |
| 161 | return (hwcap2 & kAES) != 0; |
| 162 | |
| 163 | #elif defined(ABSL_ARCH_AARCH64) |
| 164 | // For AARCH64: Require crypto+neon |
| 165 | // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500f/CIHBIBBA.html |
| 166 | static const uint32_t kNEON = 1 << 1; |
| 167 | static const uint32_t kAES = 1 << 3; |
| 168 | const uint32_t hwcap = GetAuxval(AT_HWCAP); |
| 169 | return ((hwcap & kNEON) != 0) && ((hwcap & kAES) != 0); |
| 170 | #endif |
| 171 | |
| 172 | #else // ABSL_INTERNAL_USE_GETAUXVAL |
| 173 | // 3. By default, assume that the compiler default. |
| 174 | return ABSL_HAVE_ACCELERATED_AES ? true : false; |
| 175 | |
| 176 | #endif |
| 177 | // NOTE: There are some other techniques that may be worth trying: |
| 178 | // |
| 179 | // * Use an environment variable: ABSL_RANDOM_USE_HWAES |
| 180 | // |
| 181 | // * Rely on compiler-generated target-based dispatch. |
| 182 | // Using x86/gcc it might look something like this: |
| 183 | // |
| 184 | // int __attribute__((target("aes"))) HasAes() { return 1; } |
| 185 | // int __attribute__((target("default"))) HasAes() { return 0; } |
| 186 | // |
| 187 | // This does not work on all architecture/compiler combinations. |
| 188 | // |
| 189 | // * On Linux consider reading /proc/cpuinfo and/or /proc/self/auxv. |
| 190 | // These files have lines which are easy to parse; for ARM/AARCH64 it is quite |
| 191 | // easy to find the Features: line and extract aes / neon. Likewise for |
| 192 | // PPC. |
| 193 | // |
| 194 | // * Fork a process and test for SIGILL: |
| 195 | // |
| 196 | // * Many architectures have instructions to read the ISA. Unfortunately |
| 197 | // most of those require that the code is running in ring 0 / |
| 198 | // protected-mode. |
| 199 | // |
| 200 | // There are several examples. e.g. Valgrind detects PPC ISA 2.07: |
| 201 | // https://github.com/lu-zero/valgrind/blob/master/none/tests/ppc64/test_isa_2_07_part1.c |
| 202 | // |
| 203 | // MRS <Xt>, ID_AA64ISAR0_EL1 ; Read ID_AA64ISAR0_EL1 into Xt |
| 204 | // |
| 205 | // uint64_t val; |
| 206 | // __asm __volatile("mrs %0, id_aa64isar0_el1" :"=&r" (val)); |
| 207 | // |
| 208 | // * Use a CPUID-style heuristic database. |
| 209 | // |
| 210 | // * On Apple (__APPLE__), AES is available on Arm v8. |
| 211 | // https://stackoverflow.com/questions/45637888/how-to-determine-armv8-features-at-runtime-on-ios |
| 212 | } |
| 213 | |
| 214 | #if defined(__clang__) |
| 215 | #pragma clang diagnostic pop |
| 216 | #endif |
| 217 | |
| 218 | } // namespace random_internal |
| 219 | } // namespace absl |