Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_ |
| 16 | #define ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_ |
| 17 | |
| 18 | #include <cstddef> |
| 19 | #include <iostream> |
| 20 | #include <vector> |
| 21 | |
| 22 | #include "absl/strings/string_view.h" |
| 23 | #include "absl/types/span.h" |
| 24 | |
| 25 | // NOTE: The functions in this file are test only, and are should not be used in |
| 26 | // non-test code. |
| 27 | |
| 28 | namespace absl { |
| 29 | namespace random_internal { |
| 30 | |
| 31 | // http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%205%20-%20Normality%20Testing.pdf |
| 32 | |
| 33 | // Compute the 1st to 4th standard moments: |
| 34 | // mean, variance, skewness, and kurtosis. |
| 35 | // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm |
| 36 | struct DistributionMoments { |
| 37 | size_t n = 0; |
| 38 | double mean = 0.0; |
| 39 | double variance = 0.0; |
| 40 | double skewness = 0.0; |
| 41 | double kurtosis = 0.0; |
| 42 | }; |
| 43 | DistributionMoments ComputeDistributionMoments( |
| 44 | absl::Span<const double> data_points); |
| 45 | |
| 46 | std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments); |
| 47 | |
| 48 | // Computes the Z-score for a set of data with the given distribution moments |
| 49 | // compared against `expected_mean`. |
| 50 | double ZScore(double expected_mean, const DistributionMoments& moments); |
| 51 | |
| 52 | // Returns the probability of success required for a single trial to ensure that |
| 53 | // after `num_trials` trials, the probability of at least one failure is no more |
| 54 | // than `p_fail`. |
| 55 | double RequiredSuccessProbability(double p_fail, int num_trials); |
| 56 | |
| 57 | // Computes the maximum distance from the mean tolerable, for Z-Tests that are |
| 58 | // expected to pass with `acceptance_probability`. Will terminate if the |
| 59 | // resulting tolerance is zero (due to passing in 0.0 for |
| 60 | // `acceptance_probability` or rounding errors). |
| 61 | // |
| 62 | // For example, |
| 63 | // MaxErrorTolerance(0.001) = 0.0 |
| 64 | // MaxErrorTolerance(0.5) = ~0.47 |
| 65 | // MaxErrorTolerance(1.0) = inf |
| 66 | double MaxErrorTolerance(double acceptance_probability); |
| 67 | |
| 68 | // Approximation to inverse of the Error Function in double precision. |
| 69 | // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf) |
| 70 | double erfinv(double x); |
| 71 | |
| 72 | // Beta(p, q) = Gamma(p) * Gamma(q) / Gamma(p+q) |
| 73 | double beta(double p, double q); |
| 74 | |
| 75 | // The inverse of the normal survival function. |
| 76 | double InverseNormalSurvival(double x); |
| 77 | |
| 78 | // Returns whether actual is "near" expected, based on the bound. |
| 79 | bool Near(absl::string_view msg, double actual, double expected, double bound); |
| 80 | |
| 81 | // Implements the incomplete regularized beta function, AS63, BETAIN. |
| 82 | // https://www.jstor.org/stable/2346797 |
| 83 | // |
| 84 | // BetaIncomplete(x, p, q), where |
| 85 | // `x` is the value of the upper limit |
| 86 | // `p` is beta parameter p, `q` is beta parameter q. |
| 87 | // |
| 88 | // NOTE: This is a test-only function which is only accurate to within, at most, |
| 89 | // 1e-13 of the actual value. |
| 90 | // |
| 91 | double BetaIncomplete(double x, double p, double q); |
| 92 | |
| 93 | // Implements the inverse of the incomplete regularized beta function, AS109, |
| 94 | // XINBTA. |
| 95 | // https://www.jstor.org/stable/2346798 |
| 96 | // https://www.jstor.org/stable/2346887 |
| 97 | // |
| 98 | // BetaIncompleteInv(p, q, beta, alhpa) |
| 99 | // `p` is beta parameter p, `q` is beta parameter q. |
| 100 | // `alpha` is the value of the lower tail area. |
| 101 | // |
| 102 | // NOTE: This is a test-only function and, when successful, is only accurate to |
| 103 | // within ~1e-6 of the actual value; there are some cases where it diverges from |
| 104 | // the actual value by much more than that. The function uses Newton's method, |
| 105 | // and thus the runtime is highly variable. |
| 106 | double BetaIncompleteInv(double p, double q, double alpha); |
| 107 | |
| 108 | } // namespace random_internal |
| 109 | } // namespace absl |
| 110 | |
| 111 | #endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_ |