blob: 85c8d596ebf85159afb113f7464f91c38d0d1901 [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2017 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "absl/random/internal/distribution_test_util.h"
16
17#include <cassert>
18#include <cmath>
19#include <string>
20#include <vector>
21
22#include "absl/base/internal/raw_logging.h"
23#include "absl/base/macros.h"
24#include "absl/strings/str_cat.h"
25#include "absl/strings/str_format.h"
26
27namespace absl {
28namespace random_internal {
29namespace {
30
31#if defined(__EMSCRIPTEN__)
32// Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
33inline double fma(double x, double y, double z) { return (x * y) + z; }
34#endif
35
36} // namespace
37
38DistributionMoments ComputeDistributionMoments(
39 absl::Span<const double> data_points) {
40 DistributionMoments result;
41
42 // Compute m1
43 for (double x : data_points) {
44 result.n++;
45 result.mean += x;
46 }
47 result.mean /= static_cast<double>(result.n);
48
49 // Compute m2, m3, m4
50 for (double x : data_points) {
51 double v = x - result.mean;
52 result.variance += v * v;
53 result.skewness += v * v * v;
54 result.kurtosis += v * v * v * v;
55 }
56 result.variance /= static_cast<double>(result.n - 1);
57
58 result.skewness /= static_cast<double>(result.n);
59 result.skewness /= std::pow(result.variance, 1.5);
60
61 result.kurtosis /= static_cast<double>(result.n);
62 result.kurtosis /= std::pow(result.variance, 2.0);
63 return result;
64
65 // When validating the min/max count, the following confidence intervals may
66 // be of use:
67 // 3.291 * stddev = 99.9% CI
68 // 2.576 * stddev = 99% CI
69 // 1.96 * stddev = 95% CI
70 // 1.65 * stddev = 90% CI
71}
72
73std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {
74 return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
75 moments.mean, std::sqrt(moments.variance),
76 moments.skewness, moments.kurtosis);
77}
78
79double InverseNormalSurvival(double x) {
80 // inv_sf(u) = -sqrt(2) * erfinv(2u-1)
81 static constexpr double kSqrt2 = 1.4142135623730950488;
82 return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0);
83}
84
85bool Near(absl::string_view msg, double actual, double expected, double bound) {
86 assert(bound > 0.0);
87 double delta = fabs(expected - actual);
88 if (delta < bound) {
89 return true;
90 }
91
92 std::string formatted = absl::StrCat(
93 msg, " actual=", actual, " expected=", expected, " err=", delta / bound);
94 ABSL_RAW_LOG(INFO, "%s", formatted.c_str());
95 return false;
96}
97
98// TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try
99// to use std::beta(). As of this writing P0226R1 is not implemented
100// in libc++: http://libcxx.llvm.org/cxx1z_status.html
101double beta(double p, double q) {
102 // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y)
103 double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
104 return std::exp(lbeta);
105}
106
107// Approximation to inverse of the Error Function in double precision.
108// (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
109double erfinv(double x) {
110#if !defined(__EMSCRIPTEN__)
111 using std::fma;
112#endif
113
114 double w = 0.0;
115 double p = 0.0;
116 w = -std::log((1.0 - x) * (1.0 + x));
117 if (w < 6.250000) {
118 w = w - 3.125000;
119 p = -3.6444120640178196996e-21;
120 p = fma(p, w, -1.685059138182016589e-19);
121 p = fma(p, w, 1.2858480715256400167e-18);
122 p = fma(p, w, 1.115787767802518096e-17);
123 p = fma(p, w, -1.333171662854620906e-16);
124 p = fma(p, w, 2.0972767875968561637e-17);
125 p = fma(p, w, 6.6376381343583238325e-15);
126 p = fma(p, w, -4.0545662729752068639e-14);
127 p = fma(p, w, -8.1519341976054721522e-14);
128 p = fma(p, w, 2.6335093153082322977e-12);
129 p = fma(p, w, -1.2975133253453532498e-11);
130 p = fma(p, w, -5.4154120542946279317e-11);
131 p = fma(p, w, 1.051212273321532285e-09);
132 p = fma(p, w, -4.1126339803469836976e-09);
133 p = fma(p, w, -2.9070369957882005086e-08);
134 p = fma(p, w, 4.2347877827932403518e-07);
135 p = fma(p, w, -1.3654692000834678645e-06);
136 p = fma(p, w, -1.3882523362786468719e-05);
137 p = fma(p, w, 0.0001867342080340571352);
138 p = fma(p, w, -0.00074070253416626697512);
139 p = fma(p, w, -0.0060336708714301490533);
140 p = fma(p, w, 0.24015818242558961693);
141 p = fma(p, w, 1.6536545626831027356);
142 } else if (w < 16.000000) {
143 w = std::sqrt(w) - 3.250000;
144 p = 2.2137376921775787049e-09;
145 p = fma(p, w, 9.0756561938885390979e-08);
146 p = fma(p, w, -2.7517406297064545428e-07);
147 p = fma(p, w, 1.8239629214389227755e-08);
148 p = fma(p, w, 1.5027403968909827627e-06);
149 p = fma(p, w, -4.013867526981545969e-06);
150 p = fma(p, w, 2.9234449089955446044e-06);
151 p = fma(p, w, 1.2475304481671778723e-05);
152 p = fma(p, w, -4.7318229009055733981e-05);
153 p = fma(p, w, 6.8284851459573175448e-05);
154 p = fma(p, w, 2.4031110387097893999e-05);
155 p = fma(p, w, -0.0003550375203628474796);
156 p = fma(p, w, 0.00095328937973738049703);
157 p = fma(p, w, -0.0016882755560235047313);
158 p = fma(p, w, 0.0024914420961078508066);
159 p = fma(p, w, -0.0037512085075692412107);
160 p = fma(p, w, 0.005370914553590063617);
161 p = fma(p, w, 1.0052589676941592334);
162 p = fma(p, w, 3.0838856104922207635);
163 } else {
164 w = std::sqrt(w) - 5.000000;
165 p = -2.7109920616438573243e-11;
166 p = fma(p, w, -2.5556418169965252055e-10);
167 p = fma(p, w, 1.5076572693500548083e-09);
168 p = fma(p, w, -3.7894654401267369937e-09);
169 p = fma(p, w, 7.6157012080783393804e-09);
170 p = fma(p, w, -1.4960026627149240478e-08);
171 p = fma(p, w, 2.9147953450901080826e-08);
172 p = fma(p, w, -6.7711997758452339498e-08);
173 p = fma(p, w, 2.2900482228026654717e-07);
174 p = fma(p, w, -9.9298272942317002539e-07);
175 p = fma(p, w, 4.5260625972231537039e-06);
176 p = fma(p, w, -1.9681778105531670567e-05);
177 p = fma(p, w, 7.5995277030017761139e-05);
178 p = fma(p, w, -0.00021503011930044477347);
179 p = fma(p, w, -0.00013871931833623122026);
180 p = fma(p, w, 1.0103004648645343977);
181 p = fma(p, w, 4.8499064014085844221);
182 }
183 return p * x;
184}
185
186namespace {
187
188// Direct implementation of AS63, BETAIN()
189// https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents.
190//
191// BETAIN(x, p, q, beta)
192// x: the value of the upper limit x.
193// p: the value of the parameter p.
194// q: the value of the parameter q.
195// beta: the value of ln B(p, q)
196//
197double BetaIncompleteImpl(const double x, const double p, const double q,
198 const double beta) {
199 if (p < (p + q) * x) {
200 // Incomplete beta function is symmetrical, so return the complement.
201 return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);
202 }
203
204 double psq = p + q;
205 const double kErr = 1e-14;
206 const double xc = 1. - x;
207 const double pre =
208 std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;
209
210 double term = 1.;
211 double ai = 1.;
212 double result = 1.;
213 int ns = static_cast<int>(q + xc * psq);
214
215 // Use the soper reduction forumla.
216 double rx = (ns == 0) ? x : x / xc;
217 double temp = q - ai;
218 for (;;) {
219 term = term * temp * rx / (p + ai);
220 result = result + term;
221 temp = std::fabs(term);
222 if (temp < kErr && temp < kErr * result) {
223 return result * pre;
224 }
225 ai = ai + 1.;
226 --ns;
227 if (ns >= 0) {
228 temp = q - ai;
229 if (ns == 0) {
230 rx = x;
231 }
232 } else {
233 temp = psq;
234 psq = psq + 1.;
235 }
236 }
237
238 // NOTE: See also TOMS Alogrithm 708.
239 // http://www.netlib.org/toms/index.html
240 //
241 // NOTE: The NWSC library also includes BRATIO / ISUBX (p87)
242 // https://archive.org/details/DTIC_ADA261511/page/n75
243}
244
245// Direct implementation of AS109, XINBTA(p, q, beta, alpha)
246// https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents
247// https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents
248//
249// XINBTA(p, q, beta, alhpa)
250// p: the value of the parameter p.
251// q: the value of the parameter q.
252// beta: the value of ln B(p, q)
253// alpha: the value of the lower tail area.
254//
255double BetaIncompleteInvImpl(const double p, const double q, const double beta,
256 const double alpha) {
257 if (alpha < 0.5) {
258 // Inverse Incomplete beta function is symmetrical, return the complement.
259 return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);
260 }
261 const double kErr = 1e-14;
262 double value = kErr;
263
264 // Compute the initial estimate.
265 {
266 double r = std::sqrt(-std::log(alpha * alpha));
267 double y =
268 r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);
269 if (p > 1. && q > 1.) {
270 r = (y * y - 3.) / 6.;
271 double s = 1. / (p + p - 1.);
272 double t = 1. / (q + q - 1.);
273 double h = 2. / s + t;
274 double w =
275 y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));
276 value = p / (p + q * std::exp(w + w));
277 } else {
278 r = q + q;
279 double t = 1.0 / (9. * q);
280 double u = 1.0 - t + y * std::sqrt(t);
281 t = r * (u * u * u);
282 if (t <= 0) {
283 value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);
284 } else {
285 t = (4.0 * p + r - 2.0) / t;
286 if (t <= 1) {
287 value = std::exp((std::log(alpha * p) + beta) / p);
288 } else {
289 value = 1.0 - 2.0 / (t + 1.0);
290 }
291 }
292 }
293 }
294
295 // Solve for x using a modified newton-raphson method using the function
296 // BetaIncomplete.
297 {
298 value = std::max(value, kErr);
299 value = std::min(value, 1.0 - kErr);
300
301 const double r = 1.0 - p;
302 const double t = 1.0 - q;
303 double y;
304 double yprev = 0;
305 double sq = 1;
306 double prev = 1;
307 for (;;) {
308 if (value < 0 || value > 1.0) {
309 // Error case; value went infinite.
310 return std::numeric_limits<double>::infinity();
311 } else if (value == 0 || value == 1) {
312 y = value;
313 } else {
314 y = BetaIncompleteImpl(value, p, q, beta);
315 if (!std::isfinite(y)) {
316 return y;
317 }
318 }
319 y = (y - alpha) *
320 std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));
321 if (y * yprev <= 0) {
322 prev = std::max(sq, std::numeric_limits<double>::min());
323 }
324 double g = 1.0;
325 for (;;) {
326 const double adj = g * y;
327 const double adj_sq = adj * adj;
328 if (adj_sq >= prev) {
329 g = g / 3.0;
330 continue;
331 }
332 const double tx = value - adj;
333 if (tx < 0 || tx > 1) {
334 g = g / 3.0;
335 continue;
336 }
337 if (prev < kErr) {
338 return value;
339 }
340 if (y * y < kErr) {
341 return value;
342 }
343 if (tx == value) {
344 return value;
345 }
346 if (tx == 0 || tx == 1) {
347 g = g / 3.0;
348 continue;
349 }
350 value = tx;
351 yprev = y;
352 break;
353 }
354 }
355 }
356
357 // NOTES: See also: Asymptotic inversion of the incomplete beta function.
358 // https://core.ac.uk/download/pdf/82140723.pdf
359 //
360 // NOTE: See the Boost library documentation as well:
361 // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
362}
363
364} // namespace
365
366double BetaIncomplete(const double x, const double p, const double q) {
367 // Error cases.
368 if (p < 0 || q < 0 || x < 0 || x > 1.0) {
369 return std::numeric_limits<double>::infinity();
370 }
371 if (x == 0 || x == 1) {
372 return x;
373 }
374 // ln(Beta(p, q))
375 double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
376 return BetaIncompleteImpl(x, p, q, beta);
377}
378
379double BetaIncompleteInv(const double p, const double q, const double alpha) {
380 // Error cases.
381 if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
382 return std::numeric_limits<double>::infinity();
383 }
384 if (alpha == 0 || alpha == 1) {
385 return alpha;
386 }
387 // ln(Beta(p, q))
388 double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
389 return BetaIncompleteInvImpl(p, q, beta, alpha);
390}
391
392// Given `num_trials` trials each with probability `p` of success, the
393// probability of no failures is `p^k`. To ensure the probability of a failure
394// is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function
395// computes `p` from that equation.
396double RequiredSuccessProbability(const double p_fail, const int num_trials) {
397 double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));
398 ABSL_ASSERT(p > 0);
399 return p;
400}
401
402double ZScore(double expected_mean, const DistributionMoments& moments) {
403 return (moments.mean - expected_mean) /
404 (std::sqrt(moments.variance) /
405 std::sqrt(static_cast<double>(moments.n)));
406}
407
408double MaxErrorTolerance(double acceptance_probability) {
409 double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);
410 const double max_err = InverseNormalSurvival(one_sided_pvalue);
411 ABSL_ASSERT(max_err > 0);
412 return max_err;
413}
414
415} // namespace random_internal
416} // namespace absl