Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/random/internal/distribution_test_util.h" |
| 16 | |
| 17 | #include <cassert> |
| 18 | #include <cmath> |
| 19 | #include <string> |
| 20 | #include <vector> |
| 21 | |
| 22 | #include "absl/base/internal/raw_logging.h" |
| 23 | #include "absl/base/macros.h" |
| 24 | #include "absl/strings/str_cat.h" |
| 25 | #include "absl/strings/str_format.h" |
| 26 | |
| 27 | namespace absl { |
| 28 | namespace random_internal { |
| 29 | namespace { |
| 30 | |
| 31 | #if defined(__EMSCRIPTEN__) |
| 32 | // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found. |
| 33 | inline double fma(double x, double y, double z) { return (x * y) + z; } |
| 34 | #endif |
| 35 | |
| 36 | } // namespace |
| 37 | |
| 38 | DistributionMoments ComputeDistributionMoments( |
| 39 | absl::Span<const double> data_points) { |
| 40 | DistributionMoments result; |
| 41 | |
| 42 | // Compute m1 |
| 43 | for (double x : data_points) { |
| 44 | result.n++; |
| 45 | result.mean += x; |
| 46 | } |
| 47 | result.mean /= static_cast<double>(result.n); |
| 48 | |
| 49 | // Compute m2, m3, m4 |
| 50 | for (double x : data_points) { |
| 51 | double v = x - result.mean; |
| 52 | result.variance += v * v; |
| 53 | result.skewness += v * v * v; |
| 54 | result.kurtosis += v * v * v * v; |
| 55 | } |
| 56 | result.variance /= static_cast<double>(result.n - 1); |
| 57 | |
| 58 | result.skewness /= static_cast<double>(result.n); |
| 59 | result.skewness /= std::pow(result.variance, 1.5); |
| 60 | |
| 61 | result.kurtosis /= static_cast<double>(result.n); |
| 62 | result.kurtosis /= std::pow(result.variance, 2.0); |
| 63 | return result; |
| 64 | |
| 65 | // When validating the min/max count, the following confidence intervals may |
| 66 | // be of use: |
| 67 | // 3.291 * stddev = 99.9% CI |
| 68 | // 2.576 * stddev = 99% CI |
| 69 | // 1.96 * stddev = 95% CI |
| 70 | // 1.65 * stddev = 90% CI |
| 71 | } |
| 72 | |
| 73 | std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) { |
| 74 | return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f", |
| 75 | moments.mean, std::sqrt(moments.variance), |
| 76 | moments.skewness, moments.kurtosis); |
| 77 | } |
| 78 | |
| 79 | double InverseNormalSurvival(double x) { |
| 80 | // inv_sf(u) = -sqrt(2) * erfinv(2u-1) |
| 81 | static constexpr double kSqrt2 = 1.4142135623730950488; |
| 82 | return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0); |
| 83 | } |
| 84 | |
| 85 | bool Near(absl::string_view msg, double actual, double expected, double bound) { |
| 86 | assert(bound > 0.0); |
| 87 | double delta = fabs(expected - actual); |
| 88 | if (delta < bound) { |
| 89 | return true; |
| 90 | } |
| 91 | |
| 92 | std::string formatted = absl::StrCat( |
| 93 | msg, " actual=", actual, " expected=", expected, " err=", delta / bound); |
| 94 | ABSL_RAW_LOG(INFO, "%s", formatted.c_str()); |
| 95 | return false; |
| 96 | } |
| 97 | |
| 98 | // TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try |
| 99 | // to use std::beta(). As of this writing P0226R1 is not implemented |
| 100 | // in libc++: http://libcxx.llvm.org/cxx1z_status.html |
| 101 | double beta(double p, double q) { |
| 102 | // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y) |
| 103 | double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q); |
| 104 | return std::exp(lbeta); |
| 105 | } |
| 106 | |
| 107 | // Approximation to inverse of the Error Function in double precision. |
| 108 | // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf) |
| 109 | double erfinv(double x) { |
| 110 | #if !defined(__EMSCRIPTEN__) |
| 111 | using std::fma; |
| 112 | #endif |
| 113 | |
| 114 | double w = 0.0; |
| 115 | double p = 0.0; |
| 116 | w = -std::log((1.0 - x) * (1.0 + x)); |
| 117 | if (w < 6.250000) { |
| 118 | w = w - 3.125000; |
| 119 | p = -3.6444120640178196996e-21; |
| 120 | p = fma(p, w, -1.685059138182016589e-19); |
| 121 | p = fma(p, w, 1.2858480715256400167e-18); |
| 122 | p = fma(p, w, 1.115787767802518096e-17); |
| 123 | p = fma(p, w, -1.333171662854620906e-16); |
| 124 | p = fma(p, w, 2.0972767875968561637e-17); |
| 125 | p = fma(p, w, 6.6376381343583238325e-15); |
| 126 | p = fma(p, w, -4.0545662729752068639e-14); |
| 127 | p = fma(p, w, -8.1519341976054721522e-14); |
| 128 | p = fma(p, w, 2.6335093153082322977e-12); |
| 129 | p = fma(p, w, -1.2975133253453532498e-11); |
| 130 | p = fma(p, w, -5.4154120542946279317e-11); |
| 131 | p = fma(p, w, 1.051212273321532285e-09); |
| 132 | p = fma(p, w, -4.1126339803469836976e-09); |
| 133 | p = fma(p, w, -2.9070369957882005086e-08); |
| 134 | p = fma(p, w, 4.2347877827932403518e-07); |
| 135 | p = fma(p, w, -1.3654692000834678645e-06); |
| 136 | p = fma(p, w, -1.3882523362786468719e-05); |
| 137 | p = fma(p, w, 0.0001867342080340571352); |
| 138 | p = fma(p, w, -0.00074070253416626697512); |
| 139 | p = fma(p, w, -0.0060336708714301490533); |
| 140 | p = fma(p, w, 0.24015818242558961693); |
| 141 | p = fma(p, w, 1.6536545626831027356); |
| 142 | } else if (w < 16.000000) { |
| 143 | w = std::sqrt(w) - 3.250000; |
| 144 | p = 2.2137376921775787049e-09; |
| 145 | p = fma(p, w, 9.0756561938885390979e-08); |
| 146 | p = fma(p, w, -2.7517406297064545428e-07); |
| 147 | p = fma(p, w, 1.8239629214389227755e-08); |
| 148 | p = fma(p, w, 1.5027403968909827627e-06); |
| 149 | p = fma(p, w, -4.013867526981545969e-06); |
| 150 | p = fma(p, w, 2.9234449089955446044e-06); |
| 151 | p = fma(p, w, 1.2475304481671778723e-05); |
| 152 | p = fma(p, w, -4.7318229009055733981e-05); |
| 153 | p = fma(p, w, 6.8284851459573175448e-05); |
| 154 | p = fma(p, w, 2.4031110387097893999e-05); |
| 155 | p = fma(p, w, -0.0003550375203628474796); |
| 156 | p = fma(p, w, 0.00095328937973738049703); |
| 157 | p = fma(p, w, -0.0016882755560235047313); |
| 158 | p = fma(p, w, 0.0024914420961078508066); |
| 159 | p = fma(p, w, -0.0037512085075692412107); |
| 160 | p = fma(p, w, 0.005370914553590063617); |
| 161 | p = fma(p, w, 1.0052589676941592334); |
| 162 | p = fma(p, w, 3.0838856104922207635); |
| 163 | } else { |
| 164 | w = std::sqrt(w) - 5.000000; |
| 165 | p = -2.7109920616438573243e-11; |
| 166 | p = fma(p, w, -2.5556418169965252055e-10); |
| 167 | p = fma(p, w, 1.5076572693500548083e-09); |
| 168 | p = fma(p, w, -3.7894654401267369937e-09); |
| 169 | p = fma(p, w, 7.6157012080783393804e-09); |
| 170 | p = fma(p, w, -1.4960026627149240478e-08); |
| 171 | p = fma(p, w, 2.9147953450901080826e-08); |
| 172 | p = fma(p, w, -6.7711997758452339498e-08); |
| 173 | p = fma(p, w, 2.2900482228026654717e-07); |
| 174 | p = fma(p, w, -9.9298272942317002539e-07); |
| 175 | p = fma(p, w, 4.5260625972231537039e-06); |
| 176 | p = fma(p, w, -1.9681778105531670567e-05); |
| 177 | p = fma(p, w, 7.5995277030017761139e-05); |
| 178 | p = fma(p, w, -0.00021503011930044477347); |
| 179 | p = fma(p, w, -0.00013871931833623122026); |
| 180 | p = fma(p, w, 1.0103004648645343977); |
| 181 | p = fma(p, w, 4.8499064014085844221); |
| 182 | } |
| 183 | return p * x; |
| 184 | } |
| 185 | |
| 186 | namespace { |
| 187 | |
| 188 | // Direct implementation of AS63, BETAIN() |
| 189 | // https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents. |
| 190 | // |
| 191 | // BETAIN(x, p, q, beta) |
| 192 | // x: the value of the upper limit x. |
| 193 | // p: the value of the parameter p. |
| 194 | // q: the value of the parameter q. |
| 195 | // beta: the value of ln B(p, q) |
| 196 | // |
| 197 | double BetaIncompleteImpl(const double x, const double p, const double q, |
| 198 | const double beta) { |
| 199 | if (p < (p + q) * x) { |
| 200 | // Incomplete beta function is symmetrical, so return the complement. |
| 201 | return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta); |
| 202 | } |
| 203 | |
| 204 | double psq = p + q; |
| 205 | const double kErr = 1e-14; |
| 206 | const double xc = 1. - x; |
| 207 | const double pre = |
| 208 | std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p; |
| 209 | |
| 210 | double term = 1.; |
| 211 | double ai = 1.; |
| 212 | double result = 1.; |
| 213 | int ns = static_cast<int>(q + xc * psq); |
| 214 | |
| 215 | // Use the soper reduction forumla. |
| 216 | double rx = (ns == 0) ? x : x / xc; |
| 217 | double temp = q - ai; |
| 218 | for (;;) { |
| 219 | term = term * temp * rx / (p + ai); |
| 220 | result = result + term; |
| 221 | temp = std::fabs(term); |
| 222 | if (temp < kErr && temp < kErr * result) { |
| 223 | return result * pre; |
| 224 | } |
| 225 | ai = ai + 1.; |
| 226 | --ns; |
| 227 | if (ns >= 0) { |
| 228 | temp = q - ai; |
| 229 | if (ns == 0) { |
| 230 | rx = x; |
| 231 | } |
| 232 | } else { |
| 233 | temp = psq; |
| 234 | psq = psq + 1.; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | // NOTE: See also TOMS Alogrithm 708. |
| 239 | // http://www.netlib.org/toms/index.html |
| 240 | // |
| 241 | // NOTE: The NWSC library also includes BRATIO / ISUBX (p87) |
| 242 | // https://archive.org/details/DTIC_ADA261511/page/n75 |
| 243 | } |
| 244 | |
| 245 | // Direct implementation of AS109, XINBTA(p, q, beta, alpha) |
| 246 | // https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents |
| 247 | // https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents |
| 248 | // |
| 249 | // XINBTA(p, q, beta, alhpa) |
| 250 | // p: the value of the parameter p. |
| 251 | // q: the value of the parameter q. |
| 252 | // beta: the value of ln B(p, q) |
| 253 | // alpha: the value of the lower tail area. |
| 254 | // |
| 255 | double BetaIncompleteInvImpl(const double p, const double q, const double beta, |
| 256 | const double alpha) { |
| 257 | if (alpha < 0.5) { |
| 258 | // Inverse Incomplete beta function is symmetrical, return the complement. |
| 259 | return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha); |
| 260 | } |
| 261 | const double kErr = 1e-14; |
| 262 | double value = kErr; |
| 263 | |
| 264 | // Compute the initial estimate. |
| 265 | { |
| 266 | double r = std::sqrt(-std::log(alpha * alpha)); |
| 267 | double y = |
| 268 | r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0); |
| 269 | if (p > 1. && q > 1.) { |
| 270 | r = (y * y - 3.) / 6.; |
| 271 | double s = 1. / (p + p - 1.); |
| 272 | double t = 1. / (q + q - 1.); |
| 273 | double h = 2. / s + t; |
| 274 | double w = |
| 275 | y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h)); |
| 276 | value = p / (p + q * std::exp(w + w)); |
| 277 | } else { |
| 278 | r = q + q; |
| 279 | double t = 1.0 / (9. * q); |
| 280 | double u = 1.0 - t + y * std::sqrt(t); |
| 281 | t = r * (u * u * u); |
| 282 | if (t <= 0) { |
| 283 | value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q); |
| 284 | } else { |
| 285 | t = (4.0 * p + r - 2.0) / t; |
| 286 | if (t <= 1) { |
| 287 | value = std::exp((std::log(alpha * p) + beta) / p); |
| 288 | } else { |
| 289 | value = 1.0 - 2.0 / (t + 1.0); |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | // Solve for x using a modified newton-raphson method using the function |
| 296 | // BetaIncomplete. |
| 297 | { |
| 298 | value = std::max(value, kErr); |
| 299 | value = std::min(value, 1.0 - kErr); |
| 300 | |
| 301 | const double r = 1.0 - p; |
| 302 | const double t = 1.0 - q; |
| 303 | double y; |
| 304 | double yprev = 0; |
| 305 | double sq = 1; |
| 306 | double prev = 1; |
| 307 | for (;;) { |
| 308 | if (value < 0 || value > 1.0) { |
| 309 | // Error case; value went infinite. |
| 310 | return std::numeric_limits<double>::infinity(); |
| 311 | } else if (value == 0 || value == 1) { |
| 312 | y = value; |
| 313 | } else { |
| 314 | y = BetaIncompleteImpl(value, p, q, beta); |
| 315 | if (!std::isfinite(y)) { |
| 316 | return y; |
| 317 | } |
| 318 | } |
| 319 | y = (y - alpha) * |
| 320 | std::exp(beta + r * std::log(value) + t * std::log(1.0 - value)); |
| 321 | if (y * yprev <= 0) { |
| 322 | prev = std::max(sq, std::numeric_limits<double>::min()); |
| 323 | } |
| 324 | double g = 1.0; |
| 325 | for (;;) { |
| 326 | const double adj = g * y; |
| 327 | const double adj_sq = adj * adj; |
| 328 | if (adj_sq >= prev) { |
| 329 | g = g / 3.0; |
| 330 | continue; |
| 331 | } |
| 332 | const double tx = value - adj; |
| 333 | if (tx < 0 || tx > 1) { |
| 334 | g = g / 3.0; |
| 335 | continue; |
| 336 | } |
| 337 | if (prev < kErr) { |
| 338 | return value; |
| 339 | } |
| 340 | if (y * y < kErr) { |
| 341 | return value; |
| 342 | } |
| 343 | if (tx == value) { |
| 344 | return value; |
| 345 | } |
| 346 | if (tx == 0 || tx == 1) { |
| 347 | g = g / 3.0; |
| 348 | continue; |
| 349 | } |
| 350 | value = tx; |
| 351 | yprev = y; |
| 352 | break; |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | // NOTES: See also: Asymptotic inversion of the incomplete beta function. |
| 358 | // https://core.ac.uk/download/pdf/82140723.pdf |
| 359 | // |
| 360 | // NOTE: See the Boost library documentation as well: |
| 361 | // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html |
| 362 | } |
| 363 | |
| 364 | } // namespace |
| 365 | |
| 366 | double BetaIncomplete(const double x, const double p, const double q) { |
| 367 | // Error cases. |
| 368 | if (p < 0 || q < 0 || x < 0 || x > 1.0) { |
| 369 | return std::numeric_limits<double>::infinity(); |
| 370 | } |
| 371 | if (x == 0 || x == 1) { |
| 372 | return x; |
| 373 | } |
| 374 | // ln(Beta(p, q)) |
| 375 | double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q); |
| 376 | return BetaIncompleteImpl(x, p, q, beta); |
| 377 | } |
| 378 | |
| 379 | double BetaIncompleteInv(const double p, const double q, const double alpha) { |
| 380 | // Error cases. |
| 381 | if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) { |
| 382 | return std::numeric_limits<double>::infinity(); |
| 383 | } |
| 384 | if (alpha == 0 || alpha == 1) { |
| 385 | return alpha; |
| 386 | } |
| 387 | // ln(Beta(p, q)) |
| 388 | double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q); |
| 389 | return BetaIncompleteInvImpl(p, q, beta, alpha); |
| 390 | } |
| 391 | |
| 392 | // Given `num_trials` trials each with probability `p` of success, the |
| 393 | // probability of no failures is `p^k`. To ensure the probability of a failure |
| 394 | // is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function |
| 395 | // computes `p` from that equation. |
| 396 | double RequiredSuccessProbability(const double p_fail, const int num_trials) { |
| 397 | double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials)); |
| 398 | ABSL_ASSERT(p > 0); |
| 399 | return p; |
| 400 | } |
| 401 | |
| 402 | double ZScore(double expected_mean, const DistributionMoments& moments) { |
| 403 | return (moments.mean - expected_mean) / |
| 404 | (std::sqrt(moments.variance) / |
| 405 | std::sqrt(static_cast<double>(moments.n))); |
| 406 | } |
| 407 | |
| 408 | double MaxErrorTolerance(double acceptance_probability) { |
| 409 | double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability); |
| 410 | const double max_err = InverseNormalSurvival(one_sided_pvalue); |
| 411 | ABSL_ASSERT(max_err > 0); |
| 412 | return max_err; |
| 413 | } |
| 414 | |
| 415 | } // namespace random_internal |
| 416 | } // namespace absl |