blob: 09e7a318ccc54ccfcb28458f6116a5399ee4c09c [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2017 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "absl/random/internal/distribution_impl.h"
16
17#include "gtest/gtest.h"
18#include "absl/base/internal/bits.h"
19#include "absl/flags/flag.h"
20#include "absl/numeric/int128.h"
21
22ABSL_FLAG(int64_t, absl_random_test_trials, 50000,
23 "Number of trials for the probability tests.");
24
25using absl::random_internal::NegativeValueT;
26using absl::random_internal::PositiveValueT;
27using absl::random_internal::RandU64ToDouble;
28using absl::random_internal::RandU64ToFloat;
29using absl::random_internal::SignedValueT;
30
31namespace {
32
33TEST(DistributionImplTest, U64ToFloat_Positive_NoZero_Test) {
34 auto ToFloat = [](uint64_t a) {
35 return RandU64ToFloat<PositiveValueT, false>(a);
36 };
37 EXPECT_EQ(ToFloat(0x0000000000000000), 2.710505431e-20f);
38 EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);
39 EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);
40 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
41}
42
43TEST(DistributionImplTest, U64ToFloat_Positive_Zero_Test) {
44 auto ToFloat = [](uint64_t a) {
45 return RandU64ToFloat<PositiveValueT, true>(a);
46 };
47 EXPECT_EQ(ToFloat(0x0000000000000000), 0.0);
48 EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);
49 EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);
50 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
51}
52
53TEST(DistributionImplTest, U64ToFloat_Negative_NoZero_Test) {
54 auto ToFloat = [](uint64_t a) {
55 return RandU64ToFloat<NegativeValueT, false>(a);
56 };
57 EXPECT_EQ(ToFloat(0x0000000000000000), -2.710505431e-20f);
58 EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f);
59 EXPECT_EQ(ToFloat(0x8000000000000000), -0.5);
60 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
61}
62
63TEST(DistributionImplTest, U64ToFloat_Signed_NoZero_Test) {
64 auto ToFloat = [](uint64_t a) {
65 return RandU64ToFloat<SignedValueT, false>(a);
66 };
67 EXPECT_EQ(ToFloat(0x0000000000000000), 5.421010862e-20f);
68 EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);
69 EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f);
70 EXPECT_EQ(ToFloat(0x8000000000000000), -5.421010862e-20f);
71 EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f);
72 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
73}
74
75TEST(DistributionImplTest, U64ToFloat_Signed_Zero_Test) {
76 auto ToFloat = [](uint64_t a) {
77 return RandU64ToFloat<SignedValueT, true>(a);
78 };
79 EXPECT_EQ(ToFloat(0x0000000000000000), 0);
80 EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);
81 EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f);
82 EXPECT_EQ(ToFloat(0x8000000000000000), 0);
83 EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f);
84 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
85}
86
87TEST(DistributionImplTest, U64ToFloat_Signed_Bias_Test) {
88 auto ToFloat = [](uint64_t a) {
89 return RandU64ToFloat<SignedValueT, true, 1>(a);
90 };
91 EXPECT_EQ(ToFloat(0x0000000000000000), 0);
92 EXPECT_EQ(ToFloat(0x0000000000000001), 2 * 1.084202172e-19f);
93 EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 2 * 0.9999999404f);
94 EXPECT_EQ(ToFloat(0x8000000000000000), 0);
95 EXPECT_EQ(ToFloat(0x8000000000000001), 2 * -1.084202172e-19f);
96 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 2 * -0.9999999404f);
97}
98
99TEST(DistributionImplTest, U64ToFloatTest) {
100 auto ToFloat = [](uint64_t a) -> float {
101 return RandU64ToFloat<PositiveValueT, true>(a);
102 };
103
104 EXPECT_EQ(ToFloat(0x0000000000000000), 0.0f);
105
106 EXPECT_EQ(ToFloat(0x8000000000000000), 0.5f);
107 EXPECT_EQ(ToFloat(0x8000000000000001), 0.5f);
108 EXPECT_EQ(ToFloat(0x800000FFFFFFFFFF), 0.5f);
109 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
110
111 EXPECT_GT(ToFloat(0x0000000000000001), 0.0f);
112
113 EXPECT_NE(ToFloat(0x7FFFFF0000000000), ToFloat(0x7FFFFEFFFFFFFFFF));
114
115 EXPECT_LT(ToFloat(0xFFFFFFFFFFFFFFFF), 1.0f);
116 int32_t two_to_24 = 1 << 24;
117 EXPECT_EQ(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24),
118 two_to_24 - 1);
119 EXPECT_NE(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24 * 2),
120 two_to_24 * 2 - 1);
121 EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFF0000000000));
122 EXPECT_NE(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFEFFFFFFFFFF));
123 EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF8000000000));
124 EXPECT_NE(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF7FFFFFFFFF));
125 EXPECT_EQ(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFC000000000));
126 EXPECT_NE(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFBFFFFFFFFF));
127
128 // For values where every bit counts, the values scale as multiples of the
129 // input.
130 for (int i = 0; i < 100; ++i) {
131 EXPECT_EQ(i * ToFloat(0x0000000000000001), ToFloat(i));
132 }
133
134 // For each i: value generated from (1 << i).
135 float exp_values[64];
136 exp_values[63] = 0.5f;
137 for (int i = 62; i >= 0; --i) exp_values[i] = 0.5f * exp_values[i + 1];
138 constexpr uint64_t one = 1;
139 for (int i = 0; i < 64; ++i) {
140 EXPECT_EQ(ToFloat(one << i), exp_values[i]);
141 for (int j = 1; j < FLT_MANT_DIG && i - j >= 0; ++j) {
142 EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]);
143 EXPECT_EQ(ToFloat((one << i) + (one << (i - j))),
144 exp_values[i] + exp_values[i - j]);
145 }
146 for (int j = FLT_MANT_DIG; i - j >= 0; ++j) {
147 EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]);
148 EXPECT_EQ(ToFloat((one << i) + (one << (i - j))), exp_values[i]);
149 }
150 }
151}
152
153TEST(DistributionImplTest, U64ToDouble_Positive_NoZero_Test) {
154 auto ToDouble = [](uint64_t a) {
155 return RandU64ToDouble<PositiveValueT, false>(a);
156 };
157
158 EXPECT_EQ(ToDouble(0x0000000000000000), 2.710505431213761085e-20);
159 EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
160 EXPECT_EQ(ToDouble(0x0000000000000002), 1.084202172485504434e-19);
161 EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
162 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
163}
164
165TEST(DistributionImplTest, U64ToDouble_Positive_Zero_Test) {
166 auto ToDouble = [](uint64_t a) {
167 return RandU64ToDouble<PositiveValueT, true>(a);
168 };
169
170 EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
171 EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
172 EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
173 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
174}
175
176TEST(DistributionImplTest, U64ToDouble_Negative_NoZero_Test) {
177 auto ToDouble = [](uint64_t a) {
178 return RandU64ToDouble<NegativeValueT, false>(a);
179 };
180
181 EXPECT_EQ(ToDouble(0x0000000000000000), -2.710505431213761085e-20);
182 EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20);
183 EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19);
184 EXPECT_EQ(ToDouble(0x8000000000000000), -0.5);
185 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
186}
187
188TEST(DistributionImplTest, U64ToDouble_Signed_NoZero_Test) {
189 auto ToDouble = [](uint64_t a) {
190 return RandU64ToDouble<SignedValueT, false>(a);
191 };
192
193 EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);
194 EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);
195 EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978);
196 EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20);
197 EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);
198 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
199}
200
201TEST(DistributionImplTest, U64ToDouble_Signed_Zero_Test) {
202 auto ToDouble = [](uint64_t a) {
203 return RandU64ToDouble<SignedValueT, true>(a);
204 };
205 EXPECT_EQ(ToDouble(0x0000000000000000), 0);
206 EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);
207 EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978);
208 EXPECT_EQ(ToDouble(0x8000000000000000), 0);
209 EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);
210 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
211}
212
213TEST(DistributionImplTest, U64ToDouble_Signed_Bias_Test) {
214 auto ToDouble = [](uint64_t a) {
215 return RandU64ToDouble<SignedValueT, true, -1>(a);
216 };
217 EXPECT_EQ(ToDouble(0x0000000000000000), 0);
218 EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19 / 2);
219 EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978 / 2);
220 EXPECT_EQ(ToDouble(0x8000000000000000), 0);
221 EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19 / 2);
222 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978 / 2);
223}
224
225TEST(DistributionImplTest, U64ToDoubleTest) {
226 auto ToDouble = [](uint64_t a) {
227 return RandU64ToDouble<PositiveValueT, true>(a);
228 };
229
230 EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
231 EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
232
233 EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
234 EXPECT_EQ(ToDouble(0x7fffffffffffffef), 0.499999999999999944489);
235 EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
236
237 // For values > 0.5, RandU64ToDouble discards up to 11 bits. (64-53).
238 EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
239 EXPECT_EQ(ToDouble(0x80000000000007FF), 0.5);
240 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
241 EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF));
242
243 EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFF), 1.0);
244 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF800));
245 EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF7FF));
246 EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00));
247 EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFBFF));
248 EXPECT_EQ(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFE00));
249 EXPECT_NE(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFDFF));
250
251 EXPECT_EQ(ToDouble(0x1000000000000001), 0.0625);
252 EXPECT_EQ(ToDouble(0x2000000000000001), 0.125);
253 EXPECT_EQ(ToDouble(0x3000000000000001), 0.1875);
254 EXPECT_EQ(ToDouble(0x4000000000000001), 0.25);
255 EXPECT_EQ(ToDouble(0x5000000000000001), 0.3125);
256 EXPECT_EQ(ToDouble(0x6000000000000001), 0.375);
257 EXPECT_EQ(ToDouble(0x7000000000000001), 0.4375);
258 EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
259 EXPECT_EQ(ToDouble(0x9000000000000001), 0.5625);
260 EXPECT_EQ(ToDouble(0xa000000000000001), 0.625);
261 EXPECT_EQ(ToDouble(0xb000000000000001), 0.6875);
262 EXPECT_EQ(ToDouble(0xc000000000000001), 0.75);
263 EXPECT_EQ(ToDouble(0xd000000000000001), 0.8125);
264 EXPECT_EQ(ToDouble(0xe000000000000001), 0.875);
265 EXPECT_EQ(ToDouble(0xf000000000000001), 0.9375);
266
267 // Large powers of 2.
268 int64_t two_to_53 = int64_t{1} << 53;
269 EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53),
270 two_to_53 - 1);
271 EXPECT_NE(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53 * 2),
272 two_to_53 * 2 - 1);
273
274 // For values where every bit counts, the values scale as multiples of the
275 // input.
276 for (int i = 0; i < 100; ++i) {
277 EXPECT_EQ(i * ToDouble(0x0000000000000001), ToDouble(i));
278 }
279
280 // For each i: value generated from (1 << i).
281 double exp_values[64];
282 exp_values[63] = 0.5;
283 for (int i = 62; i >= 0; --i) exp_values[i] = 0.5 * exp_values[i + 1];
284 constexpr uint64_t one = 1;
285 for (int i = 0; i < 64; ++i) {
286 EXPECT_EQ(ToDouble(one << i), exp_values[i]);
287 for (int j = 1; j < DBL_MANT_DIG && i - j >= 0; ++j) {
288 EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]);
289 EXPECT_EQ(ToDouble((one << i) + (one << (i - j))),
290 exp_values[i] + exp_values[i - j]);
291 }
292 for (int j = DBL_MANT_DIG; i - j >= 0; ++j) {
293 EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]);
294 EXPECT_EQ(ToDouble((one << i) + (one << (i - j))), exp_values[i]);
295 }
296 }
297}
298
299TEST(DistributionImplTest, U64ToDoubleSignedTest) {
300 auto ToDouble = [](uint64_t a) {
301 return RandU64ToDouble<SignedValueT, false>(a);
302 };
303
304 EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);
305 EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);
306
307 EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20);
308 EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);
309
310 const double e_plus = ToDouble(0x0000000000000001);
311 const double e_minus = ToDouble(0x8000000000000001);
312 EXPECT_EQ(e_plus, 1.084202172485504434e-19);
313 EXPECT_EQ(e_minus, -1.084202172485504434e-19);
314
315 EXPECT_EQ(ToDouble(0x3fffffffffffffef), 0.499999999999999944489);
316 EXPECT_EQ(ToDouble(0xbfffffffffffffef), -0.499999999999999944489);
317
318 // For values > 0.5, RandU64ToDouble discards up to 10 bits. (63-53).
319 EXPECT_EQ(ToDouble(0x4000000000000000), 0.5);
320 EXPECT_EQ(ToDouble(0x4000000000000001), 0.5);
321 EXPECT_EQ(ToDouble(0x40000000000003FF), 0.5);
322
323 EXPECT_EQ(ToDouble(0xC000000000000000), -0.5);
324 EXPECT_EQ(ToDouble(0xC000000000000001), -0.5);
325 EXPECT_EQ(ToDouble(0xC0000000000003FF), -0.5);
326
327 EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFe), 0.999999999999999888978);
328 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999999999888978);
329
330 EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF));
331
332 EXPECT_LT(ToDouble(0x7FFFFFFFFFFFFFFF), 1.0);
333 EXPECT_GT(ToDouble(0x7FFFFFFFFFFFFFFF), 0.9999999999);
334
335 EXPECT_GT(ToDouble(0xFFFFFFFFFFFFFFFe), -1.0);
336 EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999);
337
338 EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFFC00));
339 EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00));
340 EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFF3FF));
341 EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFF3FF));
342
343 EXPECT_EQ(ToDouble(0x1000000000000001), 0.125);
344 EXPECT_EQ(ToDouble(0x2000000000000001), 0.25);
345 EXPECT_EQ(ToDouble(0x3000000000000001), 0.375);
346 EXPECT_EQ(ToDouble(0x4000000000000001), 0.5);
347 EXPECT_EQ(ToDouble(0x5000000000000001), 0.625);
348 EXPECT_EQ(ToDouble(0x6000000000000001), 0.75);
349 EXPECT_EQ(ToDouble(0x7000000000000001), 0.875);
350 EXPECT_EQ(ToDouble(0x7800000000000001), 0.9375);
351 EXPECT_EQ(ToDouble(0x7c00000000000001), 0.96875);
352 EXPECT_EQ(ToDouble(0x7e00000000000001), 0.984375);
353 EXPECT_EQ(ToDouble(0x7f00000000000001), 0.9921875);
354
355 // 0x8000000000000000 ~= 0
356 EXPECT_EQ(ToDouble(0x9000000000000001), -0.125);
357 EXPECT_EQ(ToDouble(0xa000000000000001), -0.25);
358 EXPECT_EQ(ToDouble(0xb000000000000001), -0.375);
359 EXPECT_EQ(ToDouble(0xc000000000000001), -0.5);
360 EXPECT_EQ(ToDouble(0xd000000000000001), -0.625);
361 EXPECT_EQ(ToDouble(0xe000000000000001), -0.75);
362 EXPECT_EQ(ToDouble(0xf000000000000001), -0.875);
363
364 // Large powers of 2.
365 int64_t two_to_53 = int64_t{1} << 53;
366 EXPECT_EQ(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53),
367 two_to_53 - 1);
368 EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53),
369 -(two_to_53 - 1));
370
371 EXPECT_NE(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53 * 2),
372 two_to_53 * 2 - 1);
373
374 // For values where every bit counts, the values scale as multiples of the
375 // input.
376 for (int i = 1; i < 100; ++i) {
377 EXPECT_EQ(i * e_plus, ToDouble(i)) << i;
378 EXPECT_EQ(i * e_minus, ToDouble(0x8000000000000000 | i)) << i;
379 }
380}
381
382TEST(DistributionImplTest, ExhaustiveFloat) {
383 using absl::base_internal::CountLeadingZeros64;
384 auto ToFloat = [](uint64_t a) {
385 return RandU64ToFloat<PositiveValueT, true>(a);
386 };
387
388 // Rely on RandU64ToFloat generating values from greatest to least when
389 // supplied with uint64_t values from greatest (0xfff...) to least (0x0). Thus,
390 // this algorithm stores the previous value, and if the new value is at
391 // greater than or equal to the previous value, then there is a collision in
392 // the generation algorithm.
393 //
394 // Use the computation below to convert the random value into a result:
395 // double res = a() * (1.0f - sample) + b() * sample;
396 float last_f = 1.0, last_g = 2.0;
397 uint64_t f_collisions = 0, g_collisions = 0;
398 uint64_t f_unique = 0, g_unique = 0;
399 uint64_t total = 0;
400 auto count = [&](const float r) {
401 total++;
402 // `f` is mapped to the range [0, 1) (default)
403 const float f = 0.0f * (1.0f - r) + 1.0f * r;
404 if (f >= last_f) {
405 f_collisions++;
406 } else {
407 f_unique++;
408 last_f = f;
409 }
410 // `g` is mapped to the range [1, 2)
411 const float g = 1.0f * (1.0f - r) + 2.0f * r;
412 if (g >= last_g) {
413 g_collisions++;
414 } else {
415 g_unique++;
416 last_g = g;
417 }
418 };
419
420 size_t limit = absl::GetFlag(FLAGS_absl_random_test_trials);
421
422 // Generate all uint64_t which have unique floating point values.
423 // Counting down from 0xFFFFFFFFFFFFFFFFu ... 0x0u
424 uint64_t x = ~uint64_t(0);
425 for (; x != 0 && limit > 0;) {
426 constexpr int kDig = (64 - FLT_MANT_DIG);
427 // Set a decrement value & the next point at which to change
428 // the decrement value. By default these are 1, 0.
429 uint64_t dec = 1;
430 uint64_t chk = 0;
431
432 // Adjust decrement and check value based on how many leading 0
433 // bits are set in the current value.
434 const int clz = CountLeadingZeros64(x);
435 if (clz < kDig) {
436 dec <<= (kDig - clz);
437 chk = (~uint64_t(0)) >> (clz + 1);
438 }
439 for (; x > chk && limit > 0; x -= dec) {
440 count(ToFloat(x));
441 --limit;
442 }
443 }
444
445 static_assert(FLT_MANT_DIG == 24,
446 "The float type is expected to have a 24 bit mantissa.");
447
448 if (limit != 0) {
449 // There are between 2^28 and 2^29 unique values in the range [0, 1). For
450 // the low values of x, there are 2^24 -1 unique values. Once x > 2^24,
451 // there are 40 * 2^24 unique values. Thus:
452 // (2 + 4 + 8 ... + 2^23) + 40 * 2^23
453 EXPECT_LT(1 << 28, f_unique);
454 EXPECT_EQ((1 << 24) + 40 * (1 << 23) - 1, f_unique);
455 EXPECT_EQ(total, f_unique);
456 EXPECT_EQ(0, f_collisions);
457
458 // Expect at least 2^23 unique values for the range [1, 2)
459 EXPECT_LE(1 << 23, g_unique);
460 EXPECT_EQ(total - g_unique, g_collisions);
461 }
462}
463
464TEST(DistributionImplTest, MultiplyU64ToU128Test) {
465 using absl::random_internal::MultiplyU64ToU128;
466 constexpr uint64_t k1 = 1;
467 constexpr uint64_t kMax = ~static_cast<uint64_t>(0);
468
469 EXPECT_EQ(absl::uint128(0), MultiplyU64ToU128(0, 0));
470
471 // Max uint64
472 EXPECT_EQ(MultiplyU64ToU128(kMax, kMax),
473 absl::MakeUint128(0xfffffffffffffffe, 0x0000000000000001));
474 EXPECT_EQ(absl::MakeUint128(0, kMax), MultiplyU64ToU128(kMax, 1));
475 EXPECT_EQ(absl::MakeUint128(0, kMax), MultiplyU64ToU128(1, kMax));
476 for (int i = 0; i < 64; ++i) {
477 EXPECT_EQ(absl::MakeUint128(0, kMax) << i,
478 MultiplyU64ToU128(kMax, k1 << i));
479 EXPECT_EQ(absl::MakeUint128(0, kMax) << i,
480 MultiplyU64ToU128(k1 << i, kMax));
481 }
482
483 // 1-bit x 1-bit.
484 for (int i = 0; i < 64; ++i) {
485 for (int j = 0; j < 64; ++j) {
486 EXPECT_EQ(absl::MakeUint128(0, 1) << (i + j),
487 MultiplyU64ToU128(k1 << i, k1 << j));
488 EXPECT_EQ(absl::MakeUint128(0, 1) << (i + j),
489 MultiplyU64ToU128(k1 << i, k1 << j));
490 }
491 }
492
493 // Verified multiplies
494 EXPECT_EQ(MultiplyU64ToU128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888),
495 absl::MakeUint128(0xbbbb9e2692c5dddc, 0xc28f7531048d2c60));
496 EXPECT_EQ(MultiplyU64ToU128(0x0123456789abcdef, 0xfedcba9876543210),
497 absl::MakeUint128(0x0121fa00ad77d742, 0x2236d88fe5618cf0));
498 EXPECT_EQ(MultiplyU64ToU128(0x0123456789abcdef, 0xfdb97531eca86420),
499 absl::MakeUint128(0x0120ae99d26725fc, 0xce197f0ecac319e0));
500 EXPECT_EQ(MultiplyU64ToU128(0x97a87f4f261ba3f2, 0xfedcba9876543210),
501 absl::MakeUint128(0x96fbf1a8ae78d0ba, 0x5a6dd4b71f278320));
502 EXPECT_EQ(MultiplyU64ToU128(0xfedcba9876543210, 0xfdb97531eca86420),
503 absl::MakeUint128(0xfc98c6981a413e22, 0x342d0bbf48948200));
504}
505
506} // namespace