blob: fa8646f274cd374100afd0be6526ceaee9ac53a6 [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2017 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#ifndef ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
16#define ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
17
18// The chi-square statistic.
19//
20// Useful for evaluating if `D` independent random variables are behaving as
21// expected, or if two distributions are similar. (`D` is the degrees of
22// freedom).
23//
24// Each bucket should have an expected count of 10 or more for the chi square to
25// be meaningful.
26
27#include <cassert>
28
29namespace absl {
30namespace random_internal {
31
32constexpr const char kChiSquared[] = "chi-squared";
33
34// Returns the measured chi square value, using a single expected value. This
35// assumes that the values in [begin, end) are uniformly distributed.
36template <typename Iterator>
37double ChiSquareWithExpected(Iterator begin, Iterator end, double expected) {
38 // Compute the sum and the number of buckets.
39 assert(expected >= 10); // require at least 10 samples per bucket.
40 double chi_square = 0;
41 for (auto it = begin; it != end; it++) {
42 double d = static_cast<double>(*it) - expected;
43 chi_square += d * d;
44 }
45 chi_square = chi_square / expected;
46 return chi_square;
47}
48
49// Returns the measured chi square value, taking the actual value of each bucket
50// from the first set of iterators, and the expected value of each bucket from
51// the second set of iterators.
52template <typename Iterator, typename Expected>
53double ChiSquare(Iterator it, Iterator end, Expected eit, Expected eend) {
54 double chi_square = 0;
55 for (; it != end && eit != eend; ++it, ++eit) {
56 if (*it > 0) {
57 assert(*eit > 0);
58 }
59 double e = static_cast<double>(*eit);
60 double d = static_cast<double>(*it - *eit);
61 if (d != 0) {
62 assert(e > 0);
63 chi_square += (d * d) / e;
64 }
65 }
66 assert(it == end && eit == eend);
67 return chi_square;
68}
69
70// ======================================================================
71// The following methods can be used for an arbitrary significance level.
72//
73
74// Calculates critical chi-square values to produce the given p-value using a
75// bisection search for a value within epsilon, relying on the monotonicity of
76// ChiSquarePValue().
77double ChiSquareValue(int dof, double p);
78
79// Calculates the p-value (probability) of a given chi-square value.
80double ChiSquarePValue(double chi_square, int dof);
81
82} // namespace random_internal
83} // namespace absl
84
85#endif // ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_