blob: dc49044d3b76b04340dbbaaaea348c723f4db259 [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2017 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "absl/random/exponential_distribution.h"
16
17#include <algorithm>
18#include <cmath>
19#include <cstddef>
20#include <cstdint>
21#include <iterator>
22#include <limits>
23#include <random>
24#include <sstream>
25#include <string>
26#include <type_traits>
27#include <vector>
28
29#include "gmock/gmock.h"
30#include "gtest/gtest.h"
31#include "absl/base/internal/raw_logging.h"
32#include "absl/base/macros.h"
33#include "absl/random/internal/chi_square.h"
34#include "absl/random/internal/distribution_test_util.h"
35#include "absl/random/internal/sequence_urbg.h"
36#include "absl/random/random.h"
37#include "absl/strings/str_cat.h"
38#include "absl/strings/str_format.h"
39#include "absl/strings/str_replace.h"
40#include "absl/strings/strip.h"
41
42namespace {
43
44using absl::random_internal::kChiSquared;
45
46template <typename RealType>
47class ExponentialDistributionTypedTest : public ::testing::Test {};
48
49using RealTypes = ::testing::Types<float, double, long double>;
50TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes);
51
52TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
53 using param_type =
54 typename absl::exponential_distribution<TypeParam>::param_type;
55
56 const TypeParam kParams[] = {
57 // Cases around 1.
58 1, //
59 std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon
60 std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon
61 // Typical cases.
62 TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
63 TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
64 // Boundary cases.
65 std::numeric_limits<TypeParam>::max(),
66 std::numeric_limits<TypeParam>::epsilon(),
67 std::nextafter(std::numeric_limits<TypeParam>::min(),
68 TypeParam(1)), // min + epsilon
69 std::numeric_limits<TypeParam>::min(), // smallest normal
70 // There are some errors dealing with denorms on apple platforms.
71 std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm
72 std::numeric_limits<TypeParam>::min() / 2, // denorm
73 std::nextafter(std::numeric_limits<TypeParam>::min(),
74 TypeParam(0)), // denorm_max
75 };
76
77 constexpr int kCount = 1000;
78 absl::InsecureBitGen gen;
79
80 for (const TypeParam lambda : kParams) {
81 // Some values may be invalid; skip those.
82 if (!std::isfinite(lambda)) continue;
83 ABSL_ASSERT(lambda > 0);
84
85 const param_type param(lambda);
86
87 absl::exponential_distribution<TypeParam> before(lambda);
88 EXPECT_EQ(before.lambda(), param.lambda());
89
90 {
91 absl::exponential_distribution<TypeParam> via_param(param);
92 EXPECT_EQ(via_param, before);
93 EXPECT_EQ(via_param.param(), before.param());
94 }
95
96 // Smoke test.
97 auto sample_min = before.max();
98 auto sample_max = before.min();
99 for (int i = 0; i < kCount; i++) {
100 auto sample = before(gen);
101 EXPECT_GE(sample, before.min()) << before;
102 EXPECT_LE(sample, before.max()) << before;
103 if (sample > sample_max) sample_max = sample;
104 if (sample < sample_min) sample_min = sample;
105 }
106 if (!std::is_same<TypeParam, long double>::value) {
107 ABSL_INTERNAL_LOG(INFO,
108 absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda,
109 sample_min, sample_max, lambda));
110 }
111
112 std::stringstream ss;
113 ss << before;
114
115 if (!std::isfinite(lambda)) {
116 // Streams do not deserialize inf/nan correctly.
117 continue;
118 }
119 // Validate stream serialization.
120 absl::exponential_distribution<TypeParam> after(34.56f);
121
122 EXPECT_NE(before.lambda(), after.lambda());
123 EXPECT_NE(before.param(), after.param());
124 EXPECT_NE(before, after);
125
126 ss >> after;
127
128#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
129 defined(__ppc__) || defined(__PPC__)
130 if (std::is_same<TypeParam, long double>::value) {
131 // Roundtripping floating point values requires sufficient precision to
132 // reconstruct the exact value. It turns out that long double has some
133 // errors doing this on ppc, particularly for values
134 // near {1.0 +/- epsilon}.
135 if (lambda <= std::numeric_limits<double>::max() &&
136 lambda >= std::numeric_limits<double>::lowest()) {
137 EXPECT_EQ(static_cast<double>(before.lambda()),
138 static_cast<double>(after.lambda()))
139 << ss.str();
140 }
141 continue;
142 }
143#endif
144
145 EXPECT_EQ(before.lambda(), after.lambda()) //
146 << ss.str() << " " //
147 << (ss.good() ? "good " : "") //
148 << (ss.bad() ? "bad " : "") //
149 << (ss.eof() ? "eof " : "") //
150 << (ss.fail() ? "fail " : "");
151 }
152}
153
154// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
155
156class ExponentialModel {
157 public:
158 explicit ExponentialModel(double lambda)
159 : lambda_(lambda), beta_(1.0 / lambda) {}
160
161 double lambda() const { return lambda_; }
162
163 double mean() const { return beta_; }
164 double variance() const { return beta_ * beta_; }
165 double stddev() const { return std::sqrt(variance()); }
166 double skew() const { return 2; }
167 double kurtosis() const { return 6.0; }
168
169 double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }
170
171 // The inverse CDF, or PercentPoint function of the distribution
172 double InverseCDF(double p) {
173 ABSL_ASSERT(p >= 0.0);
174 ABSL_ASSERT(p < 1.0);
175 return -beta_ * std::log(1.0 - p);
176 }
177
178 private:
179 const double lambda_;
180 const double beta_;
181};
182
183struct Param {
184 double lambda;
185 double p_fail;
186 int trials;
187};
188
189class ExponentialDistributionTests : public testing::TestWithParam<Param>,
190 public ExponentialModel {
191 public:
192 ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}
193
194 // SingleZTest provides a basic z-squared test of the mean vs. expected
195 // mean for data generated by the poisson distribution.
196 template <typename D>
197 bool SingleZTest(const double p, const size_t samples);
198
199 // SingleChiSquaredTest provides a basic chi-squared test of the normal
200 // distribution.
201 template <typename D>
202 double SingleChiSquaredTest();
203
204 absl::InsecureBitGen rng_;
205};
206
207template <typename D>
208bool ExponentialDistributionTests::SingleZTest(const double p,
209 const size_t samples) {
210 D dis(lambda());
211
212 std::vector<double> data;
213 data.reserve(samples);
214 for (size_t i = 0; i < samples; i++) {
215 const double x = dis(rng_);
216 data.push_back(x);
217 }
218
219 const auto m = absl::random_internal::ComputeDistributionMoments(data);
220 const double max_err = absl::random_internal::MaxErrorTolerance(p);
221 const double z = absl::random_internal::ZScore(mean(), m);
222 const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
223
224 if (!pass) {
225 ABSL_INTERNAL_LOG(
226 INFO, absl::StrFormat("p=%f max_err=%f\n"
227 " lambda=%f\n"
228 " mean=%f vs. %f\n"
229 " stddev=%f vs. %f\n"
230 " skewness=%f vs. %f\n"
231 " kurtosis=%f vs. %f\n"
232 " z=%f vs. 0",
233 p, max_err, lambda(), m.mean, mean(),
234 std::sqrt(m.variance), stddev(), m.skewness,
235 skew(), m.kurtosis, kurtosis(), z));
236 }
237 return pass;
238}
239
240template <typename D>
241double ExponentialDistributionTests::SingleChiSquaredTest() {
242 const size_t kSamples = 10000;
243 const int kBuckets = 50;
244
245 // The InverseCDF is the percent point function of the distribution, and can
246 // be used to assign buckets roughly uniformly.
247 std::vector<double> cutoffs;
248 const double kInc = 1.0 / static_cast<double>(kBuckets);
249 for (double p = kInc; p < 1.0; p += kInc) {
250 cutoffs.push_back(InverseCDF(p));
251 }
252 if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
253 cutoffs.push_back(std::numeric_limits<double>::infinity());
254 }
255
256 D dis(lambda());
257
258 std::vector<int32_t> counts(cutoffs.size(), 0);
259 for (int j = 0; j < kSamples; j++) {
260 const double x = dis(rng_);
261 auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
262 counts[std::distance(cutoffs.begin(), it)]++;
263 }
264
265 // Null-hypothesis is that the distribution is exponentially distributed
266 // with the provided lambda (not estimated from the data).
267 const int dof = static_cast<int>(counts.size()) - 1;
268
269 // Our threshold for logging is 1-in-50.
270 const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
271
272 const double expected =
273 static_cast<double>(kSamples) / static_cast<double>(counts.size());
274
275 double chi_square = absl::random_internal::ChiSquareWithExpected(
276 std::begin(counts), std::end(counts), expected);
277 double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
278
279 if (chi_square > threshold) {
280 for (int i = 0; i < cutoffs.size(); i++) {
281 ABSL_INTERNAL_LOG(
282 INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
283 }
284
285 ABSL_INTERNAL_LOG(INFO,
286 absl::StrCat("lambda ", lambda(), "\n", //
287 " expected ", expected, "\n", //
288 kChiSquared, " ", chi_square, " (", p, ")\n",
289 kChiSquared, " @ 0.98 = ", threshold));
290 }
291 return p;
292}
293
294TEST_P(ExponentialDistributionTests, ZTest) {
295 const size_t kSamples = 10000;
296 const auto& param = GetParam();
297 const int expected_failures =
298 std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
299 const double p = absl::random_internal::RequiredSuccessProbability(
300 param.p_fail, param.trials);
301
302 int failures = 0;
303 for (int i = 0; i < param.trials; i++) {
304 failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
305 ? 0
306 : 1;
307 }
308 EXPECT_LE(failures, expected_failures);
309}
310
311TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
312 const int kTrials = 20;
313 int failures = 0;
314
315 for (int i = 0; i < kTrials; i++) {
316 double p_value =
317 SingleChiSquaredTest<absl::exponential_distribution<double>>();
318 if (p_value < 0.005) { // 1/200
319 failures++;
320 }
321 }
322
323 // There is a 0.10% chance of producing at least one failure, so raise the
324 // failure threshold high enough to allow for a flake rate < 10,000.
325 EXPECT_LE(failures, 4);
326}
327
328std::vector<Param> GenParams() {
329 return {
330 Param{1.0, 0.02, 100},
331 Param{2.5, 0.02, 100},
332 Param{10, 0.02, 100},
333 // large
334 Param{1e4, 0.02, 100},
335 Param{1e9, 0.02, 100},
336 // small
337 Param{0.1, 0.02, 100},
338 Param{1e-3, 0.02, 100},
339 Param{1e-5, 0.02, 100},
340 };
341}
342
343std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
344 const auto& p = info.param;
345 std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
346 return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
347}
348
349INSTANTIATE_TEST_CASE_P(All, ExponentialDistributionTests,
350 ::testing::ValuesIn(GenParams()), ParamName);
351
352// NOTE: absl::exponential_distribution is not guaranteed to be stable.
353TEST(ExponentialDistributionTest, StabilityTest) {
354 // absl::exponential_distribution stability relies on std::log1p and
355 // absl::uniform_real_distribution.
356 absl::random_internal::sequence_urbg urbg(
357 {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
358 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
359 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
360 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
361
362 std::vector<int> output(14);
363
364 {
365 absl::exponential_distribution<double> dist;
366 std::generate(std::begin(output), std::end(output),
367 [&] { return static_cast<int>(10000.0 * dist(urbg)); });
368
369 EXPECT_EQ(14, urbg.invocations());
370 EXPECT_THAT(output,
371 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
372 804, 126, 12337, 17984, 27002, 0, 71913));
373 }
374
375 urbg.reset();
376 {
377 absl::exponential_distribution<float> dist;
378 std::generate(std::begin(output), std::end(output),
379 [&] { return static_cast<int>(10000.0f * dist(urbg)); });
380
381 EXPECT_EQ(14, urbg.invocations());
382 EXPECT_THAT(output,
383 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
384 804, 126, 12337, 17984, 27002, 0, 71913));
385 }
386}
387
388TEST(ExponentialDistributionTest, AlgorithmBounds) {
389 // Relies on absl::uniform_real_distribution, so some of these comments
390 // reference that.
391 absl::exponential_distribution<double> dist;
392
393 {
394 // This returns the smallest value >0 from absl::uniform_real_distribution.
395 absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
396 double a = dist(urbg);
397 EXPECT_EQ(a, 5.42101086242752217004e-20);
398 }
399
400 {
401 // This returns a value very near 0.5 from absl::uniform_real_distribution.
402 absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
403 double a = dist(urbg);
404 EXPECT_EQ(a, 0.693147180559945175204);
405 }
406
407 {
408 // This returns the largest value <1 from absl::uniform_real_distribution.
409 // WolframAlpha: ~39.1439465808987766283058547296341915292187253
410 absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
411 double a = dist(urbg);
412 EXPECT_EQ(a, 36.7368005696771007251);
413 }
414 {
415 // This *ALSO* returns the largest value <1.
416 absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
417 double a = dist(urbg);
418 EXPECT_EQ(a, 36.7368005696771007251);
419 }
420}
421
422} // namespace