Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |
| 16 | #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |
| 17 | |
| 18 | #include <cassert> |
| 19 | #include <cmath> |
| 20 | #include <istream> |
| 21 | #include <limits> |
| 22 | #include <numeric> |
| 23 | #include <type_traits> |
| 24 | #include <utility> |
| 25 | #include <vector> |
| 26 | |
| 27 | #include "absl/random/bernoulli_distribution.h" |
| 28 | #include "absl/random/internal/iostream_state_saver.h" |
| 29 | #include "absl/random/uniform_int_distribution.h" |
| 30 | |
| 31 | namespace absl { |
| 32 | |
| 33 | // absl::discrete_distribution |
| 34 | // |
| 35 | // A discrete distribution produces random integers i, where 0 <= i < n |
| 36 | // distributed according to the discrete probability function: |
| 37 | // |
| 38 | // P(i|p0,...,pn−1)=pi |
| 39 | // |
| 40 | // This class is an implementation of discrete_distribution (see |
| 41 | // [rand.dist.samp.discrete]). |
| 42 | // |
| 43 | // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2. |
| 44 | // absl::discrete_distribution takes O(N) time to precompute the probabilities |
| 45 | // (where N is the number of possible outcomes in the distribution) at |
| 46 | // construction, and then takes O(1) time for each variate generation. Many |
| 47 | // other implementations also take O(N) time to construct an ordered sequence of |
| 48 | // partial sums, plus O(log N) time per variate to binary search. |
| 49 | // |
| 50 | template <typename IntType = int> |
| 51 | class discrete_distribution { |
| 52 | public: |
| 53 | using result_type = IntType; |
| 54 | |
| 55 | class param_type { |
| 56 | public: |
| 57 | using distribution_type = discrete_distribution; |
| 58 | |
| 59 | param_type() { init(); } |
| 60 | |
| 61 | template <typename InputIterator> |
| 62 | explicit param_type(InputIterator begin, InputIterator end) |
| 63 | : p_(begin, end) { |
| 64 | init(); |
| 65 | } |
| 66 | |
| 67 | explicit param_type(std::initializer_list<double> weights) : p_(weights) { |
| 68 | init(); |
| 69 | } |
| 70 | |
| 71 | template <class UnaryOperation> |
| 72 | explicit param_type(size_t nw, double xmin, double xmax, |
| 73 | UnaryOperation fw) { |
| 74 | if (nw > 0) { |
| 75 | p_.reserve(nw); |
| 76 | double delta = (xmax - xmin) / static_cast<double>(nw); |
| 77 | assert(delta > 0); |
| 78 | double t = delta * 0.5; |
| 79 | for (size_t i = 0; i < nw; ++i) { |
| 80 | p_.push_back(fw(xmin + i * delta + t)); |
| 81 | } |
| 82 | } |
| 83 | init(); |
| 84 | } |
| 85 | |
| 86 | const std::vector<double>& probabilities() const { return p_; } |
| 87 | size_t n() const { return p_.size() - 1; } |
| 88 | |
| 89 | friend bool operator==(const param_type& a, const param_type& b) { |
| 90 | return a.probabilities() == b.probabilities(); |
| 91 | } |
| 92 | |
| 93 | friend bool operator!=(const param_type& a, const param_type& b) { |
| 94 | return !(a == b); |
| 95 | } |
| 96 | |
| 97 | private: |
| 98 | friend class discrete_distribution; |
| 99 | |
| 100 | void init(); |
| 101 | |
| 102 | std::vector<double> p_; // normalized probabilities |
| 103 | std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs |
| 104 | |
| 105 | static_assert(std::is_integral<result_type>::value, |
| 106 | "Class-template absl::discrete_distribution<> must be " |
| 107 | "parameterized using an integral type."); |
| 108 | }; |
| 109 | |
| 110 | discrete_distribution() : param_() {} |
| 111 | |
| 112 | explicit discrete_distribution(const param_type& p) : param_(p) {} |
| 113 | |
| 114 | template <typename InputIterator> |
| 115 | explicit discrete_distribution(InputIterator begin, InputIterator end) |
| 116 | : param_(begin, end) {} |
| 117 | |
| 118 | explicit discrete_distribution(std::initializer_list<double> weights) |
| 119 | : param_(weights) {} |
| 120 | |
| 121 | template <class UnaryOperation> |
| 122 | explicit discrete_distribution(size_t nw, double xmin, double xmax, |
| 123 | UnaryOperation fw) |
| 124 | : param_(nw, xmin, xmax, std::move(fw)) {} |
| 125 | |
| 126 | void reset() {} |
| 127 | |
| 128 | // generating functions |
| 129 | template <typename URBG> |
| 130 | result_type operator()(URBG& g) { // NOLINT(runtime/references) |
| 131 | return (*this)(g, param_); |
| 132 | } |
| 133 | |
| 134 | template <typename URBG> |
| 135 | result_type operator()(URBG& g, // NOLINT(runtime/references) |
| 136 | const param_type& p); |
| 137 | |
| 138 | const param_type& param() const { return param_; } |
| 139 | void param(const param_type& p) { param_ = p; } |
| 140 | |
| 141 | result_type(min)() const { return 0; } |
| 142 | result_type(max)() const { |
| 143 | return static_cast<result_type>(param_.n()); |
| 144 | } // inclusive |
| 145 | |
| 146 | // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a |
| 147 | // const std::vector<double>&. |
| 148 | const std::vector<double>& probabilities() const { |
| 149 | return param_.probabilities(); |
| 150 | } |
| 151 | |
| 152 | friend bool operator==(const discrete_distribution& a, |
| 153 | const discrete_distribution& b) { |
| 154 | return a.param_ == b.param_; |
| 155 | } |
| 156 | friend bool operator!=(const discrete_distribution& a, |
| 157 | const discrete_distribution& b) { |
| 158 | return a.param_ != b.param_; |
| 159 | } |
| 160 | |
| 161 | private: |
| 162 | param_type param_; |
| 163 | }; |
| 164 | |
| 165 | // -------------------------------------------------------------------------- |
| 166 | // Implementation details only below |
| 167 | // -------------------------------------------------------------------------- |
| 168 | |
| 169 | namespace random_internal { |
| 170 | |
| 171 | // Using the vector `*probabilities`, whose values are the weights or |
| 172 | // probabilities of an element being selected, constructs the proportional |
| 173 | // probabilities used by the discrete distribution. `*probabilities` will be |
| 174 | // scaled, if necessary, so that its entries sum to a value sufficiently close |
| 175 | // to 1.0. |
| 176 | std::vector<std::pair<double, size_t>> InitDiscreteDistribution( |
| 177 | std::vector<double>* probabilities); |
| 178 | |
| 179 | } // namespace random_internal |
| 180 | |
| 181 | template <typename IntType> |
| 182 | void discrete_distribution<IntType>::param_type::init() { |
| 183 | if (p_.empty()) { |
| 184 | p_.push_back(1.0); |
| 185 | q_.emplace_back(1.0, 0); |
| 186 | } else { |
| 187 | assert(n() <= (std::numeric_limits<IntType>::max)()); |
| 188 | q_ = random_internal::InitDiscreteDistribution(&p_); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | template <typename IntType> |
| 193 | template <typename URBG> |
| 194 | typename discrete_distribution<IntType>::result_type |
| 195 | discrete_distribution<IntType>::operator()( |
| 196 | URBG& g, // NOLINT(runtime/references) |
| 197 | const param_type& p) { |
| 198 | const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g); |
| 199 | const auto& q = p.q_[idx]; |
| 200 | const bool selected = absl::bernoulli_distribution(q.first)(g); |
| 201 | return selected ? idx : static_cast<result_type>(q.second); |
| 202 | } |
| 203 | |
| 204 | template <typename CharT, typename Traits, typename IntType> |
| 205 | std::basic_ostream<CharT, Traits>& operator<<( |
| 206 | std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| 207 | const discrete_distribution<IntType>& x) { |
| 208 | auto saver = random_internal::make_ostream_state_saver(os); |
| 209 | const auto& probabilities = x.param().probabilities(); |
| 210 | os << probabilities.size(); |
| 211 | |
| 212 | os.precision(random_internal::stream_precision_helper<double>::kPrecision); |
| 213 | for (const auto& p : probabilities) { |
| 214 | os << os.fill() << p; |
| 215 | } |
| 216 | return os; |
| 217 | } |
| 218 | |
| 219 | template <typename CharT, typename Traits, typename IntType> |
| 220 | std::basic_istream<CharT, Traits>& operator>>( |
| 221 | std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| 222 | discrete_distribution<IntType>& x) { // NOLINT(runtime/references) |
| 223 | using param_type = typename discrete_distribution<IntType>::param_type; |
| 224 | auto saver = random_internal::make_istream_state_saver(is); |
| 225 | |
| 226 | size_t n; |
| 227 | std::vector<double> p; |
| 228 | |
| 229 | is >> n; |
| 230 | if (is.fail()) return is; |
| 231 | if (n > 0) { |
| 232 | p.reserve(n); |
| 233 | for (IntType i = 0; i < n && !is.fail(); ++i) { |
| 234 | auto tmp = random_internal::read_floating_point<double>(is); |
| 235 | if (is.fail()) return is; |
| 236 | p.push_back(tmp); |
| 237 | } |
| 238 | } |
| 239 | x.param(param_type(p.begin(), p.end())); |
| 240 | return is; |
| 241 | } |
| 242 | |
| 243 | } // namespace absl |
| 244 | |
| 245 | #endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |