blob: 1560f03c5fddd06b4922d7ac3a9def672c221812 [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2017 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
16#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
17
18#include <cassert>
19#include <cmath>
20#include <istream>
21#include <limits>
22#include <numeric>
23#include <type_traits>
24#include <utility>
25#include <vector>
26
27#include "absl/random/bernoulli_distribution.h"
28#include "absl/random/internal/iostream_state_saver.h"
29#include "absl/random/uniform_int_distribution.h"
30
31namespace absl {
32
33// absl::discrete_distribution
34//
35// A discrete distribution produces random integers i, where 0 <= i < n
36// distributed according to the discrete probability function:
37//
38// P(i|p0,...,pn−1)=pi
39//
40// This class is an implementation of discrete_distribution (see
41// [rand.dist.samp.discrete]).
42//
43// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
44// absl::discrete_distribution takes O(N) time to precompute the probabilities
45// (where N is the number of possible outcomes in the distribution) at
46// construction, and then takes O(1) time for each variate generation. Many
47// other implementations also take O(N) time to construct an ordered sequence of
48// partial sums, plus O(log N) time per variate to binary search.
49//
50template <typename IntType = int>
51class discrete_distribution {
52 public:
53 using result_type = IntType;
54
55 class param_type {
56 public:
57 using distribution_type = discrete_distribution;
58
59 param_type() { init(); }
60
61 template <typename InputIterator>
62 explicit param_type(InputIterator begin, InputIterator end)
63 : p_(begin, end) {
64 init();
65 }
66
67 explicit param_type(std::initializer_list<double> weights) : p_(weights) {
68 init();
69 }
70
71 template <class UnaryOperation>
72 explicit param_type(size_t nw, double xmin, double xmax,
73 UnaryOperation fw) {
74 if (nw > 0) {
75 p_.reserve(nw);
76 double delta = (xmax - xmin) / static_cast<double>(nw);
77 assert(delta > 0);
78 double t = delta * 0.5;
79 for (size_t i = 0; i < nw; ++i) {
80 p_.push_back(fw(xmin + i * delta + t));
81 }
82 }
83 init();
84 }
85
86 const std::vector<double>& probabilities() const { return p_; }
87 size_t n() const { return p_.size() - 1; }
88
89 friend bool operator==(const param_type& a, const param_type& b) {
90 return a.probabilities() == b.probabilities();
91 }
92
93 friend bool operator!=(const param_type& a, const param_type& b) {
94 return !(a == b);
95 }
96
97 private:
98 friend class discrete_distribution;
99
100 void init();
101
102 std::vector<double> p_; // normalized probabilities
103 std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs
104
105 static_assert(std::is_integral<result_type>::value,
106 "Class-template absl::discrete_distribution<> must be "
107 "parameterized using an integral type.");
108 };
109
110 discrete_distribution() : param_() {}
111
112 explicit discrete_distribution(const param_type& p) : param_(p) {}
113
114 template <typename InputIterator>
115 explicit discrete_distribution(InputIterator begin, InputIterator end)
116 : param_(begin, end) {}
117
118 explicit discrete_distribution(std::initializer_list<double> weights)
119 : param_(weights) {}
120
121 template <class UnaryOperation>
122 explicit discrete_distribution(size_t nw, double xmin, double xmax,
123 UnaryOperation fw)
124 : param_(nw, xmin, xmax, std::move(fw)) {}
125
126 void reset() {}
127
128 // generating functions
129 template <typename URBG>
130 result_type operator()(URBG& g) { // NOLINT(runtime/references)
131 return (*this)(g, param_);
132 }
133
134 template <typename URBG>
135 result_type operator()(URBG& g, // NOLINT(runtime/references)
136 const param_type& p);
137
138 const param_type& param() const { return param_; }
139 void param(const param_type& p) { param_ = p; }
140
141 result_type(min)() const { return 0; }
142 result_type(max)() const {
143 return static_cast<result_type>(param_.n());
144 } // inclusive
145
146 // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
147 // const std::vector<double>&.
148 const std::vector<double>& probabilities() const {
149 return param_.probabilities();
150 }
151
152 friend bool operator==(const discrete_distribution& a,
153 const discrete_distribution& b) {
154 return a.param_ == b.param_;
155 }
156 friend bool operator!=(const discrete_distribution& a,
157 const discrete_distribution& b) {
158 return a.param_ != b.param_;
159 }
160
161 private:
162 param_type param_;
163};
164
165// --------------------------------------------------------------------------
166// Implementation details only below
167// --------------------------------------------------------------------------
168
169namespace random_internal {
170
171// Using the vector `*probabilities`, whose values are the weights or
172// probabilities of an element being selected, constructs the proportional
173// probabilities used by the discrete distribution. `*probabilities` will be
174// scaled, if necessary, so that its entries sum to a value sufficiently close
175// to 1.0.
176std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
177 std::vector<double>* probabilities);
178
179} // namespace random_internal
180
181template <typename IntType>
182void discrete_distribution<IntType>::param_type::init() {
183 if (p_.empty()) {
184 p_.push_back(1.0);
185 q_.emplace_back(1.0, 0);
186 } else {
187 assert(n() <= (std::numeric_limits<IntType>::max)());
188 q_ = random_internal::InitDiscreteDistribution(&p_);
189 }
190}
191
192template <typename IntType>
193template <typename URBG>
194typename discrete_distribution<IntType>::result_type
195discrete_distribution<IntType>::operator()(
196 URBG& g, // NOLINT(runtime/references)
197 const param_type& p) {
198 const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
199 const auto& q = p.q_[idx];
200 const bool selected = absl::bernoulli_distribution(q.first)(g);
201 return selected ? idx : static_cast<result_type>(q.second);
202}
203
204template <typename CharT, typename Traits, typename IntType>
205std::basic_ostream<CharT, Traits>& operator<<(
206 std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
207 const discrete_distribution<IntType>& x) {
208 auto saver = random_internal::make_ostream_state_saver(os);
209 const auto& probabilities = x.param().probabilities();
210 os << probabilities.size();
211
212 os.precision(random_internal::stream_precision_helper<double>::kPrecision);
213 for (const auto& p : probabilities) {
214 os << os.fill() << p;
215 }
216 return os;
217}
218
219template <typename CharT, typename Traits, typename IntType>
220std::basic_istream<CharT, Traits>& operator>>(
221 std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
222 discrete_distribution<IntType>& x) { // NOLINT(runtime/references)
223 using param_type = typename discrete_distribution<IntType>::param_type;
224 auto saver = random_internal::make_istream_state_saver(is);
225
226 size_t n;
227 std::vector<double> p;
228
229 is >> n;
230 if (is.fail()) return is;
231 if (n > 0) {
232 p.reserve(n);
233 for (IntType i = 0; i < n && !is.fail(); ++i) {
234 auto tmp = random_internal::read_floating_point<double>(is);
235 if (is.fail()) return is;
236 p.push_back(tmp);
237 }
238 }
239 x.param(param_type(p.begin(), p.end()));
240 return is;
241}
242
243} // namespace absl
244
245#endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_