Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/random/bernoulli_distribution.h" |
| 16 | |
| 17 | #include <cmath> |
| 18 | #include <cstddef> |
| 19 | #include <random> |
| 20 | #include <sstream> |
| 21 | #include <utility> |
| 22 | |
| 23 | #include "gtest/gtest.h" |
| 24 | #include "absl/random/internal/sequence_urbg.h" |
| 25 | #include "absl/random/random.h" |
| 26 | |
| 27 | namespace { |
| 28 | |
| 29 | class BernoulliTest : public testing::TestWithParam<std::pair<double, size_t>> { |
| 30 | }; |
| 31 | |
| 32 | TEST_P(BernoulliTest, Serialize) { |
| 33 | const double d = GetParam().first; |
| 34 | absl::bernoulli_distribution before(d); |
| 35 | |
| 36 | { |
| 37 | absl::bernoulli_distribution via_param{ |
| 38 | absl::bernoulli_distribution::param_type(d)}; |
| 39 | EXPECT_EQ(via_param, before); |
| 40 | } |
| 41 | |
| 42 | std::stringstream ss; |
| 43 | ss << before; |
| 44 | absl::bernoulli_distribution after(0.6789); |
| 45 | |
| 46 | EXPECT_NE(before.p(), after.p()); |
| 47 | EXPECT_NE(before.param(), after.param()); |
| 48 | EXPECT_NE(before, after); |
| 49 | |
| 50 | ss >> after; |
| 51 | |
| 52 | EXPECT_EQ(before.p(), after.p()); |
| 53 | EXPECT_EQ(before.param(), after.param()); |
| 54 | EXPECT_EQ(before, after); |
| 55 | } |
| 56 | |
| 57 | TEST_P(BernoulliTest, Accuracy) { |
| 58 | // Sadly, the claim to fame for this implementation is precise accuracy, which |
| 59 | // is very, very hard to measure, the improvements come as trials approach the |
| 60 | // limit of double accuracy; thus the outcome differs from the |
| 61 | // std::bernoulli_distribution with a probability of approximately 1 in 2^-53. |
| 62 | const std::pair<double, size_t> para = GetParam(); |
| 63 | size_t trials = para.second; |
| 64 | double p = para.first; |
| 65 | |
| 66 | absl::InsecureBitGen rng; |
| 67 | |
| 68 | size_t yes = 0; |
| 69 | absl::bernoulli_distribution dist(p); |
| 70 | for (size_t i = 0; i < trials; ++i) { |
| 71 | if (dist(rng)) yes++; |
| 72 | } |
| 73 | |
| 74 | // Compute the distribution parameters for a binomial test, using a normal |
| 75 | // approximation for the confidence interval, as there are a sufficiently |
| 76 | // large number of trials that the central limit theorem applies. |
| 77 | const double stddev_p = std::sqrt((p * (1.0 - p)) / trials); |
| 78 | const double expected = trials * p; |
| 79 | const double stddev = trials * stddev_p; |
| 80 | |
| 81 | // 5 sigma, approved by Richard Feynman |
| 82 | EXPECT_NEAR(yes, expected, 5 * stddev) |
| 83 | << "@" << p << ", " |
| 84 | << std::abs(static_cast<double>(yes) - expected) / stddev << " stddev"; |
| 85 | } |
| 86 | |
| 87 | // There must be many more trials to make the mean approximately normal for `p` |
| 88 | // closes to 0 or 1. |
| 89 | INSTANTIATE_TEST_SUITE_P( |
| 90 | All, BernoulliTest, |
| 91 | ::testing::Values( |
| 92 | // Typical values. |
| 93 | std::make_pair(0, 30000), std::make_pair(1e-3, 30000000), |
| 94 | std::make_pair(0.1, 3000000), std::make_pair(0.5, 3000000), |
| 95 | std::make_pair(0.9, 30000000), std::make_pair(0.999, 30000000), |
| 96 | std::make_pair(1, 30000), |
| 97 | // Boundary cases. |
| 98 | std::make_pair(std::nextafter(1.0, 0.0), 1), // ~1 - epsilon |
| 99 | std::make_pair(std::numeric_limits<double>::epsilon(), 1), |
| 100 | std::make_pair(std::nextafter(std::numeric_limits<double>::min(), |
| 101 | 1.0), // min + epsilon |
| 102 | 1), |
| 103 | std::make_pair(std::numeric_limits<double>::min(), // smallest normal |
| 104 | 1), |
| 105 | std::make_pair( |
| 106 | std::numeric_limits<double>::denorm_min(), // smallest denorm |
| 107 | 1), |
| 108 | std::make_pair(std::numeric_limits<double>::min() / 2, 1), // denorm |
| 109 | std::make_pair(std::nextafter(std::numeric_limits<double>::min(), |
| 110 | 0.0), // denorm_max |
| 111 | 1))); |
| 112 | |
| 113 | // NOTE: absl::bernoulli_distribution is not guaranteed to be stable. |
| 114 | TEST(BernoulliTest, StabilityTest) { |
| 115 | // absl::bernoulli_distribution stability relies on FastUniformBits and |
| 116 | // integer arithmetic. |
| 117 | absl::random_internal::sequence_urbg urbg({ |
| 118 | 0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
| 119 | 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
| 120 | 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
| 121 | 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull, |
| 122 | 0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull, |
| 123 | 0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull, |
| 124 | 0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull, |
| 125 | 0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full, |
| 126 | 0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull, |
| 127 | 0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull, |
| 128 | 0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull, |
| 129 | 0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull, |
| 130 | 0xe3fd722dc65ad09eull, 0x5a14fd21ea2a5705ull, 0x14e6ea4d6edb0c73ull, |
| 131 | 0x275b0dc7e0a18acfull, 0x36cebe0d2653682eull, 0x0361e9b23861596bull, |
| 132 | }); |
| 133 | |
| 134 | // Generate a std::string of '0' and '1' for the distribution output. |
| 135 | auto generate = [&urbg](absl::bernoulli_distribution& dist) { |
| 136 | std::string output; |
| 137 | output.reserve(36); |
| 138 | urbg.reset(); |
| 139 | for (int i = 0; i < 35; i++) { |
| 140 | output.append(dist(urbg) ? "1" : "0"); |
| 141 | } |
| 142 | return output; |
| 143 | }; |
| 144 | |
| 145 | const double kP = 0.0331289862362; |
| 146 | { |
| 147 | absl::bernoulli_distribution dist(kP); |
| 148 | auto v = generate(dist); |
| 149 | EXPECT_EQ(35, urbg.invocations()); |
| 150 | EXPECT_EQ(v, "00000000000010000000000010000000000") << dist; |
| 151 | } |
| 152 | { |
| 153 | absl::bernoulli_distribution dist(kP * 10.0); |
| 154 | auto v = generate(dist); |
| 155 | EXPECT_EQ(35, urbg.invocations()); |
| 156 | EXPECT_EQ(v, "00000100010010010010000011000011010") << dist; |
| 157 | } |
| 158 | { |
| 159 | absl::bernoulli_distribution dist(kP * 20.0); |
| 160 | auto v = generate(dist); |
| 161 | EXPECT_EQ(35, urbg.invocations()); |
| 162 | EXPECT_EQ(v, "00011110010110110011011111110111011") << dist; |
| 163 | } |
| 164 | { |
| 165 | absl::bernoulli_distribution dist(1.0 - kP); |
| 166 | auto v = generate(dist); |
| 167 | EXPECT_EQ(35, urbg.invocations()); |
| 168 | EXPECT_EQ(v, "11111111111111111111011111111111111") << dist; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | TEST(BernoulliTest, StabilityTest2) { |
| 173 | absl::random_internal::sequence_urbg urbg( |
| 174 | {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
| 175 | 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
| 176 | 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
| 177 | 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); |
| 178 | |
| 179 | // Generate a std::string of '0' and '1' for the distribution output. |
| 180 | auto generate = [&urbg](absl::bernoulli_distribution& dist) { |
| 181 | std::string output; |
| 182 | output.reserve(13); |
| 183 | urbg.reset(); |
| 184 | for (int i = 0; i < 12; i++) { |
| 185 | output.append(dist(urbg) ? "1" : "0"); |
| 186 | } |
| 187 | return output; |
| 188 | }; |
| 189 | |
| 190 | constexpr double b0 = 1.0 / 13.0 / 0.2; |
| 191 | constexpr double b1 = 2.0 / 13.0 / 0.2; |
| 192 | constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1)); |
| 193 | { |
| 194 | absl::bernoulli_distribution dist(b0); |
| 195 | auto v = generate(dist); |
| 196 | EXPECT_EQ(12, urbg.invocations()); |
| 197 | EXPECT_EQ(v, "000011100101") << dist; |
| 198 | } |
| 199 | { |
| 200 | absl::bernoulli_distribution dist(b1); |
| 201 | auto v = generate(dist); |
| 202 | EXPECT_EQ(12, urbg.invocations()); |
| 203 | EXPECT_EQ(v, "001111101101") << dist; |
| 204 | } |
| 205 | { |
| 206 | absl::bernoulli_distribution dist(b3); |
| 207 | auto v = generate(dist); |
| 208 | EXPECT_EQ(12, urbg.invocations()); |
| 209 | EXPECT_EQ(v, "001111101111") << dist; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | } // namespace |