Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | // |
| 15 | // ----------------------------------------------------------------------------- |
| 16 | // File: memory.h |
| 17 | // ----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // This header file contains utility functions for managing the creation and |
| 20 | // conversion of smart pointers. This file is an extension to the C++ |
| 21 | // standard <memory> library header file. |
| 22 | |
| 23 | #ifndef ABSL_MEMORY_MEMORY_H_ |
| 24 | #define ABSL_MEMORY_MEMORY_H_ |
| 25 | |
| 26 | #include <cstddef> |
| 27 | #include <limits> |
| 28 | #include <memory> |
| 29 | #include <new> |
| 30 | #include <type_traits> |
| 31 | #include <utility> |
| 32 | |
| 33 | #include "absl/base/macros.h" |
| 34 | #include "absl/meta/type_traits.h" |
| 35 | |
| 36 | namespace absl { |
| 37 | |
| 38 | // ----------------------------------------------------------------------------- |
| 39 | // Function Template: WrapUnique() |
| 40 | // ----------------------------------------------------------------------------- |
| 41 | // |
| 42 | // Adopts ownership from a raw pointer and transfers it to the returned |
| 43 | // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not* |
| 44 | // specify the template type `T` when calling `WrapUnique`. |
| 45 | // |
| 46 | // Example: |
| 47 | // X* NewX(int, int); |
| 48 | // auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>. |
| 49 | // |
| 50 | // Do not call WrapUnique with an explicit type, as in |
| 51 | // `WrapUnique<X>(NewX(1, 2))`. The purpose of WrapUnique is to automatically |
| 52 | // deduce the pointer type. If you wish to make the type explicit, just use |
| 53 | // `std::unique_ptr` directly. |
| 54 | // |
| 55 | // auto x = std::unique_ptr<X>(NewX(1, 2)); |
| 56 | // - or - |
| 57 | // std::unique_ptr<X> x(NewX(1, 2)); |
| 58 | // |
| 59 | // While `absl::WrapUnique` is useful for capturing the output of a raw |
| 60 | // pointer factory, prefer 'absl::make_unique<T>(args...)' over |
| 61 | // 'absl::WrapUnique(new T(args...))'. |
| 62 | // |
| 63 | // auto x = WrapUnique(new X(1, 2)); // works, but nonideal. |
| 64 | // auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'. |
| 65 | // |
| 66 | // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid |
| 67 | // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to |
| 68 | // arrays, functions or void, and it must not be used to capture pointers |
| 69 | // obtained from array-new expressions (even though that would compile!). |
| 70 | template <typename T> |
| 71 | std::unique_ptr<T> WrapUnique(T* ptr) { |
| 72 | static_assert(!std::is_array<T>::value, "array types are unsupported"); |
| 73 | static_assert(std::is_object<T>::value, "non-object types are unsupported"); |
| 74 | return std::unique_ptr<T>(ptr); |
| 75 | } |
| 76 | |
| 77 | namespace memory_internal { |
| 78 | |
| 79 | // Traits to select proper overload and return type for `absl::make_unique<>`. |
| 80 | template <typename T> |
| 81 | struct MakeUniqueResult { |
| 82 | using scalar = std::unique_ptr<T>; |
| 83 | }; |
| 84 | template <typename T> |
| 85 | struct MakeUniqueResult<T[]> { |
| 86 | using array = std::unique_ptr<T[]>; |
| 87 | }; |
| 88 | template <typename T, size_t N> |
| 89 | struct MakeUniqueResult<T[N]> { |
| 90 | using invalid = void; |
| 91 | }; |
| 92 | |
| 93 | } // namespace memory_internal |
| 94 | |
| 95 | // gcc 4.8 has __cplusplus at 201301 but doesn't define make_unique. Other |
| 96 | // supported compilers either just define __cplusplus as 201103 but have |
| 97 | // make_unique (msvc), or have make_unique whenever __cplusplus > 201103 (clang) |
| 98 | #if (__cplusplus > 201103L || defined(_MSC_VER)) && \ |
| 99 | !(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8) |
| 100 | using std::make_unique; |
| 101 | #else |
| 102 | // ----------------------------------------------------------------------------- |
| 103 | // Function Template: make_unique<T>() |
| 104 | // ----------------------------------------------------------------------------- |
| 105 | // |
| 106 | // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries |
| 107 | // during the construction process. `absl::make_unique<>` also avoids redundant |
| 108 | // type declarations, by avoiding the need to explicitly use the `new` operator. |
| 109 | // |
| 110 | // This implementation of `absl::make_unique<>` is designed for C++11 code and |
| 111 | // will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction. |
| 112 | // `absl::make_unique<>` is designed to be 100% compatible with |
| 113 | // `std::make_unique<>` so that the eventual migration will involve a simple |
| 114 | // rename operation. |
| 115 | // |
| 116 | // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic, |
| 117 | // see Herb Sutter's explanation on |
| 118 | // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/]. |
| 119 | // (In general, reviewers should treat `new T(a,b)` with scrutiny.) |
| 120 | // |
| 121 | // Example usage: |
| 122 | // |
| 123 | // auto p = make_unique<X>(args...); // 'p' is a std::unique_ptr<X> |
| 124 | // auto pa = make_unique<X[]>(5); // 'pa' is a std::unique_ptr<X[]> |
| 125 | // |
| 126 | // Three overloads of `absl::make_unique` are required: |
| 127 | // |
| 128 | // - For non-array T: |
| 129 | // |
| 130 | // Allocates a T with `new T(std::forward<Args> args...)`, |
| 131 | // forwarding all `args` to T's constructor. |
| 132 | // Returns a `std::unique_ptr<T>` owning that object. |
| 133 | // |
| 134 | // - For an array of unknown bounds T[]: |
| 135 | // |
| 136 | // `absl::make_unique<>` will allocate an array T of type U[] with |
| 137 | // `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array. |
| 138 | // |
| 139 | // Note that 'U[n]()' is different from 'U[n]', and elements will be |
| 140 | // value-initialized. Note as well that `std::unique_ptr` will perform its |
| 141 | // own destruction of the array elements upon leaving scope, even though |
| 142 | // the array [] does not have a default destructor. |
| 143 | // |
| 144 | // NOTE: an array of unknown bounds T[] may still be (and often will be) |
| 145 | // initialized to have a size, and will still use this overload. E.g: |
| 146 | // |
| 147 | // auto my_array = absl::make_unique<int[]>(10); |
| 148 | // |
| 149 | // - For an array of known bounds T[N]: |
| 150 | // |
| 151 | // `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as |
| 152 | // this overload is not useful. |
| 153 | // |
| 154 | // NOTE: an array of known bounds T[N] is not considered a useful |
| 155 | // construction, and may cause undefined behavior in templates. E.g: |
| 156 | // |
| 157 | // auto my_array = absl::make_unique<int[10]>(); |
| 158 | // |
| 159 | // In those cases, of course, you can still use the overload above and |
| 160 | // simply initialize it to its desired size: |
| 161 | // |
| 162 | // auto my_array = absl::make_unique<int[]>(10); |
| 163 | |
| 164 | // `absl::make_unique` overload for non-array types. |
| 165 | template <typename T, typename... Args> |
| 166 | typename memory_internal::MakeUniqueResult<T>::scalar make_unique( |
| 167 | Args&&... args) { |
| 168 | return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); |
| 169 | } |
| 170 | |
| 171 | // `absl::make_unique` overload for an array T[] of unknown bounds. |
| 172 | // The array allocation needs to use the `new T[size]` form and cannot take |
| 173 | // element constructor arguments. The `std::unique_ptr` will manage destructing |
| 174 | // these array elements. |
| 175 | template <typename T> |
| 176 | typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) { |
| 177 | return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]()); |
| 178 | } |
| 179 | |
| 180 | // `absl::make_unique` overload for an array T[N] of known bounds. |
| 181 | // This construction will be rejected. |
| 182 | template <typename T, typename... Args> |
| 183 | typename memory_internal::MakeUniqueResult<T>::invalid make_unique( |
| 184 | Args&&... /* args */) = delete; |
| 185 | #endif |
| 186 | |
| 187 | // ----------------------------------------------------------------------------- |
| 188 | // Function Template: RawPtr() |
| 189 | // ----------------------------------------------------------------------------- |
| 190 | // |
| 191 | // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is |
| 192 | // useful within templates that need to handle a complement of raw pointers, |
| 193 | // `std::nullptr_t`, and smart pointers. |
| 194 | template <typename T> |
| 195 | auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) { |
| 196 | // ptr is a forwarding reference to support Ts with non-const operators. |
| 197 | return (ptr != nullptr) ? std::addressof(*ptr) : nullptr; |
| 198 | } |
| 199 | inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; } |
| 200 | |
| 201 | // ----------------------------------------------------------------------------- |
| 202 | // Function Template: ShareUniquePtr() |
| 203 | // ----------------------------------------------------------------------------- |
| 204 | // |
| 205 | // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced |
| 206 | // type. Ownership (if any) of the held value is transferred to the returned |
| 207 | // shared pointer. |
| 208 | // |
| 209 | // Example: |
| 210 | // |
| 211 | // auto up = absl::make_unique<int>(10); |
| 212 | // auto sp = absl::ShareUniquePtr(std::move(up)); // shared_ptr<int> |
| 213 | // CHECK_EQ(*sp, 10); |
| 214 | // CHECK(up == nullptr); |
| 215 | // |
| 216 | // Note that this conversion is correct even when T is an array type, and more |
| 217 | // generally it works for *any* deleter of the `unique_ptr` (single-object |
| 218 | // deleter, array deleter, or any custom deleter), since the deleter is adopted |
| 219 | // by the shared pointer as well. The deleter is copied (unless it is a |
| 220 | // reference). |
| 221 | // |
| 222 | // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a |
| 223 | // null shared pointer does not attempt to call the deleter. |
| 224 | template <typename T, typename D> |
| 225 | std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) { |
| 226 | return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>(); |
| 227 | } |
| 228 | |
| 229 | // ----------------------------------------------------------------------------- |
| 230 | // Function Template: WeakenPtr() |
| 231 | // ----------------------------------------------------------------------------- |
| 232 | // |
| 233 | // Creates a weak pointer associated with a given shared pointer. The returned |
| 234 | // value is a `std::weak_ptr` of deduced type. |
| 235 | // |
| 236 | // Example: |
| 237 | // |
| 238 | // auto sp = std::make_shared<int>(10); |
| 239 | // auto wp = absl::WeakenPtr(sp); |
| 240 | // CHECK_EQ(sp.get(), wp.lock().get()); |
| 241 | // sp.reset(); |
| 242 | // CHECK(wp.lock() == nullptr); |
| 243 | // |
| 244 | template <typename T> |
| 245 | std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) { |
| 246 | return std::weak_ptr<T>(ptr); |
| 247 | } |
| 248 | |
| 249 | namespace memory_internal { |
| 250 | |
| 251 | // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D. |
| 252 | template <template <typename> class Extract, typename Obj, typename Default, |
| 253 | typename> |
| 254 | struct ExtractOr { |
| 255 | using type = Default; |
| 256 | }; |
| 257 | |
| 258 | template <template <typename> class Extract, typename Obj, typename Default> |
| 259 | struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> { |
| 260 | using type = Extract<Obj>; |
| 261 | }; |
| 262 | |
| 263 | template <template <typename> class Extract, typename Obj, typename Default> |
| 264 | using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type; |
| 265 | |
| 266 | // Extractors for the features of allocators. |
| 267 | template <typename T> |
| 268 | using GetPointer = typename T::pointer; |
| 269 | |
| 270 | template <typename T> |
| 271 | using GetConstPointer = typename T::const_pointer; |
| 272 | |
| 273 | template <typename T> |
| 274 | using GetVoidPointer = typename T::void_pointer; |
| 275 | |
| 276 | template <typename T> |
| 277 | using GetConstVoidPointer = typename T::const_void_pointer; |
| 278 | |
| 279 | template <typename T> |
| 280 | using GetDifferenceType = typename T::difference_type; |
| 281 | |
| 282 | template <typename T> |
| 283 | using GetSizeType = typename T::size_type; |
| 284 | |
| 285 | template <typename T> |
| 286 | using GetPropagateOnContainerCopyAssignment = |
| 287 | typename T::propagate_on_container_copy_assignment; |
| 288 | |
| 289 | template <typename T> |
| 290 | using GetPropagateOnContainerMoveAssignment = |
| 291 | typename T::propagate_on_container_move_assignment; |
| 292 | |
| 293 | template <typename T> |
| 294 | using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap; |
| 295 | |
| 296 | template <typename T> |
| 297 | using GetIsAlwaysEqual = typename T::is_always_equal; |
| 298 | |
| 299 | template <typename T> |
| 300 | struct GetFirstArg; |
| 301 | |
| 302 | template <template <typename...> class Class, typename T, typename... Args> |
| 303 | struct GetFirstArg<Class<T, Args...>> { |
| 304 | using type = T; |
| 305 | }; |
| 306 | |
| 307 | template <typename Ptr, typename = void> |
| 308 | struct ElementType { |
| 309 | using type = typename GetFirstArg<Ptr>::type; |
| 310 | }; |
| 311 | |
| 312 | template <typename T> |
| 313 | struct ElementType<T, void_t<typename T::element_type>> { |
| 314 | using type = typename T::element_type; |
| 315 | }; |
| 316 | |
| 317 | template <typename T, typename U> |
| 318 | struct RebindFirstArg; |
| 319 | |
| 320 | template <template <typename...> class Class, typename T, typename... Args, |
| 321 | typename U> |
| 322 | struct RebindFirstArg<Class<T, Args...>, U> { |
| 323 | using type = Class<U, Args...>; |
| 324 | }; |
| 325 | |
| 326 | template <typename T, typename U, typename = void> |
| 327 | struct RebindPtr { |
| 328 | using type = typename RebindFirstArg<T, U>::type; |
| 329 | }; |
| 330 | |
| 331 | template <typename T, typename U> |
| 332 | struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> { |
| 333 | using type = typename T::template rebind<U>; |
| 334 | }; |
| 335 | |
| 336 | template <typename T, typename U> |
| 337 | constexpr bool HasRebindAlloc(...) { |
| 338 | return false; |
| 339 | } |
| 340 | |
| 341 | template <typename T, typename U> |
| 342 | constexpr bool HasRebindAlloc(typename T::template rebind<U>::other*) { |
| 343 | return true; |
| 344 | } |
| 345 | |
| 346 | template <typename T, typename U, bool = HasRebindAlloc<T, U>(nullptr)> |
| 347 | struct RebindAlloc { |
| 348 | using type = typename RebindFirstArg<T, U>::type; |
| 349 | }; |
| 350 | |
| 351 | template <typename T, typename U> |
| 352 | struct RebindAlloc<T, U, true> { |
| 353 | using type = typename T::template rebind<U>::other; |
| 354 | }; |
| 355 | |
| 356 | } // namespace memory_internal |
| 357 | |
| 358 | // ----------------------------------------------------------------------------- |
| 359 | // Class Template: pointer_traits |
| 360 | // ----------------------------------------------------------------------------- |
| 361 | // |
| 362 | // An implementation of C++11's std::pointer_traits. |
| 363 | // |
| 364 | // Provided for portability on toolchains that have a working C++11 compiler, |
| 365 | // but the standard library is lacking in C++11 support. For example, some |
| 366 | // version of the Android NDK. |
| 367 | // |
| 368 | |
| 369 | template <typename Ptr> |
| 370 | struct pointer_traits { |
| 371 | using pointer = Ptr; |
| 372 | |
| 373 | // element_type: |
| 374 | // Ptr::element_type if present. Otherwise T if Ptr is a template |
| 375 | // instantiation Template<T, Args...> |
| 376 | using element_type = typename memory_internal::ElementType<Ptr>::type; |
| 377 | |
| 378 | // difference_type: |
| 379 | // Ptr::difference_type if present, otherwise std::ptrdiff_t |
| 380 | using difference_type = |
| 381 | memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr, |
| 382 | std::ptrdiff_t>; |
| 383 | |
| 384 | // rebind: |
| 385 | // Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a |
| 386 | // template instantiation Template<T, Args...> |
| 387 | template <typename U> |
| 388 | using rebind = typename memory_internal::RebindPtr<Ptr, U>::type; |
| 389 | |
| 390 | // pointer_to: |
| 391 | // Calls Ptr::pointer_to(r) |
| 392 | static pointer pointer_to(element_type& r) { // NOLINT(runtime/references) |
| 393 | return Ptr::pointer_to(r); |
| 394 | } |
| 395 | }; |
| 396 | |
| 397 | // Specialization for T*. |
| 398 | template <typename T> |
| 399 | struct pointer_traits<T*> { |
| 400 | using pointer = T*; |
| 401 | using element_type = T; |
| 402 | using difference_type = std::ptrdiff_t; |
| 403 | |
| 404 | template <typename U> |
| 405 | using rebind = U*; |
| 406 | |
| 407 | // pointer_to: |
| 408 | // Calls std::addressof(r) |
| 409 | static pointer pointer_to( |
| 410 | element_type& r) noexcept { // NOLINT(runtime/references) |
| 411 | return std::addressof(r); |
| 412 | } |
| 413 | }; |
| 414 | |
| 415 | // ----------------------------------------------------------------------------- |
| 416 | // Class Template: allocator_traits |
| 417 | // ----------------------------------------------------------------------------- |
| 418 | // |
| 419 | // A C++11 compatible implementation of C++17's std::allocator_traits. |
| 420 | // |
| 421 | template <typename Alloc> |
| 422 | struct allocator_traits { |
| 423 | using allocator_type = Alloc; |
| 424 | |
| 425 | // value_type: |
| 426 | // Alloc::value_type |
| 427 | using value_type = typename Alloc::value_type; |
| 428 | |
| 429 | // pointer: |
| 430 | // Alloc::pointer if present, otherwise value_type* |
| 431 | using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer, |
| 432 | Alloc, value_type*>; |
| 433 | |
| 434 | // const_pointer: |
| 435 | // Alloc::const_pointer if present, otherwise |
| 436 | // absl::pointer_traits<pointer>::rebind<const value_type> |
| 437 | using const_pointer = |
| 438 | memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc, |
| 439 | typename absl::pointer_traits<pointer>:: |
| 440 | template rebind<const value_type>>; |
| 441 | |
| 442 | // void_pointer: |
| 443 | // Alloc::void_pointer if present, otherwise |
| 444 | // absl::pointer_traits<pointer>::rebind<void> |
| 445 | using void_pointer = memory_internal::ExtractOrT< |
| 446 | memory_internal::GetVoidPointer, Alloc, |
| 447 | typename absl::pointer_traits<pointer>::template rebind<void>>; |
| 448 | |
| 449 | // const_void_pointer: |
| 450 | // Alloc::const_void_pointer if present, otherwise |
| 451 | // absl::pointer_traits<pointer>::rebind<const void> |
| 452 | using const_void_pointer = memory_internal::ExtractOrT< |
| 453 | memory_internal::GetConstVoidPointer, Alloc, |
| 454 | typename absl::pointer_traits<pointer>::template rebind<const void>>; |
| 455 | |
| 456 | // difference_type: |
| 457 | // Alloc::difference_type if present, otherwise |
| 458 | // absl::pointer_traits<pointer>::difference_type |
| 459 | using difference_type = memory_internal::ExtractOrT< |
| 460 | memory_internal::GetDifferenceType, Alloc, |
| 461 | typename absl::pointer_traits<pointer>::difference_type>; |
| 462 | |
| 463 | // size_type: |
| 464 | // Alloc::size_type if present, otherwise |
| 465 | // std::make_unsigned<difference_type>::type |
| 466 | using size_type = memory_internal::ExtractOrT< |
| 467 | memory_internal::GetSizeType, Alloc, |
| 468 | typename std::make_unsigned<difference_type>::type>; |
| 469 | |
| 470 | // propagate_on_container_copy_assignment: |
| 471 | // Alloc::propagate_on_container_copy_assignment if present, otherwise |
| 472 | // std::false_type |
| 473 | using propagate_on_container_copy_assignment = memory_internal::ExtractOrT< |
| 474 | memory_internal::GetPropagateOnContainerCopyAssignment, Alloc, |
| 475 | std::false_type>; |
| 476 | |
| 477 | // propagate_on_container_move_assignment: |
| 478 | // Alloc::propagate_on_container_move_assignment if present, otherwise |
| 479 | // std::false_type |
| 480 | using propagate_on_container_move_assignment = memory_internal::ExtractOrT< |
| 481 | memory_internal::GetPropagateOnContainerMoveAssignment, Alloc, |
| 482 | std::false_type>; |
| 483 | |
| 484 | // propagate_on_container_swap: |
| 485 | // Alloc::propagate_on_container_swap if present, otherwise std::false_type |
| 486 | using propagate_on_container_swap = |
| 487 | memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap, |
| 488 | Alloc, std::false_type>; |
| 489 | |
| 490 | // is_always_equal: |
| 491 | // Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type |
| 492 | using is_always_equal = |
| 493 | memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc, |
| 494 | typename std::is_empty<Alloc>::type>; |
| 495 | |
| 496 | // rebind_alloc: |
| 497 | // Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc |
| 498 | // is Alloc<U, Args> |
| 499 | template <typename T> |
| 500 | using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type; |
| 501 | |
| 502 | // rebind_traits: |
| 503 | // absl::allocator_traits<rebind_alloc<T>> |
| 504 | template <typename T> |
| 505 | using rebind_traits = absl::allocator_traits<rebind_alloc<T>>; |
| 506 | |
| 507 | // allocate(Alloc& a, size_type n): |
| 508 | // Calls a.allocate(n) |
| 509 | static pointer allocate(Alloc& a, // NOLINT(runtime/references) |
| 510 | size_type n) { |
| 511 | return a.allocate(n); |
| 512 | } |
| 513 | |
| 514 | // allocate(Alloc& a, size_type n, const_void_pointer hint): |
| 515 | // Calls a.allocate(n, hint) if possible. |
| 516 | // If not possible, calls a.allocate(n) |
| 517 | static pointer allocate(Alloc& a, size_type n, // NOLINT(runtime/references) |
| 518 | const_void_pointer hint) { |
| 519 | return allocate_impl(0, a, n, hint); |
| 520 | } |
| 521 | |
| 522 | // deallocate(Alloc& a, pointer p, size_type n): |
| 523 | // Calls a.deallocate(p, n) |
| 524 | static void deallocate(Alloc& a, pointer p, // NOLINT(runtime/references) |
| 525 | size_type n) { |
| 526 | a.deallocate(p, n); |
| 527 | } |
| 528 | |
| 529 | // construct(Alloc& a, T* p, Args&&... args): |
| 530 | // Calls a.construct(p, std::forward<Args>(args)...) if possible. |
| 531 | // If not possible, calls |
| 532 | // ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...) |
| 533 | template <typename T, typename... Args> |
| 534 | static void construct(Alloc& a, T* p, // NOLINT(runtime/references) |
| 535 | Args&&... args) { |
| 536 | construct_impl(0, a, p, std::forward<Args>(args)...); |
| 537 | } |
| 538 | |
| 539 | // destroy(Alloc& a, T* p): |
| 540 | // Calls a.destroy(p) if possible. If not possible, calls p->~T(). |
| 541 | template <typename T> |
| 542 | static void destroy(Alloc& a, T* p) { // NOLINT(runtime/references) |
| 543 | destroy_impl(0, a, p); |
| 544 | } |
| 545 | |
| 546 | // max_size(const Alloc& a): |
| 547 | // Returns a.max_size() if possible. If not possible, returns |
| 548 | // std::numeric_limits<size_type>::max() / sizeof(value_type) |
| 549 | static size_type max_size(const Alloc& a) { return max_size_impl(0, a); } |
| 550 | |
| 551 | // select_on_container_copy_construction(const Alloc& a): |
| 552 | // Returns a.select_on_container_copy_construction() if possible. |
| 553 | // If not possible, returns a. |
| 554 | static Alloc select_on_container_copy_construction(const Alloc& a) { |
| 555 | return select_on_container_copy_construction_impl(0, a); |
| 556 | } |
| 557 | |
| 558 | private: |
| 559 | template <typename A> |
| 560 | static auto allocate_impl(int, A& a, // NOLINT(runtime/references) |
| 561 | size_type n, const_void_pointer hint) |
| 562 | -> decltype(a.allocate(n, hint)) { |
| 563 | return a.allocate(n, hint); |
| 564 | } |
| 565 | static pointer allocate_impl(char, Alloc& a, // NOLINT(runtime/references) |
| 566 | size_type n, const_void_pointer) { |
| 567 | return a.allocate(n); |
| 568 | } |
| 569 | |
| 570 | template <typename A, typename... Args> |
| 571 | static auto construct_impl(int, A& a, // NOLINT(runtime/references) |
| 572 | Args&&... args) |
| 573 | -> decltype(a.construct(std::forward<Args>(args)...)) { |
| 574 | a.construct(std::forward<Args>(args)...); |
| 575 | } |
| 576 | |
| 577 | template <typename T, typename... Args> |
| 578 | static void construct_impl(char, Alloc&, T* p, Args&&... args) { |
| 579 | ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...); |
| 580 | } |
| 581 | |
| 582 | template <typename A, typename T> |
| 583 | static auto destroy_impl(int, A& a, // NOLINT(runtime/references) |
| 584 | T* p) -> decltype(a.destroy(p)) { |
| 585 | a.destroy(p); |
| 586 | } |
| 587 | template <typename T> |
| 588 | static void destroy_impl(char, Alloc&, T* p) { |
| 589 | p->~T(); |
| 590 | } |
| 591 | |
| 592 | template <typename A> |
| 593 | static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) { |
| 594 | return a.max_size(); |
| 595 | } |
| 596 | static size_type max_size_impl(char, const Alloc&) { |
| 597 | return (std::numeric_limits<size_type>::max)() / sizeof(value_type); |
| 598 | } |
| 599 | |
| 600 | template <typename A> |
| 601 | static auto select_on_container_copy_construction_impl(int, const A& a) |
| 602 | -> decltype(a.select_on_container_copy_construction()) { |
| 603 | return a.select_on_container_copy_construction(); |
| 604 | } |
| 605 | static Alloc select_on_container_copy_construction_impl(char, |
| 606 | const Alloc& a) { |
| 607 | return a; |
| 608 | } |
| 609 | }; |
| 610 | |
| 611 | namespace memory_internal { |
| 612 | |
| 613 | // This template alias transforms Alloc::is_nothrow into a metafunction with |
| 614 | // Alloc as a parameter so it can be used with ExtractOrT<>. |
| 615 | template <typename Alloc> |
| 616 | using GetIsNothrow = typename Alloc::is_nothrow; |
| 617 | |
| 618 | } // namespace memory_internal |
| 619 | |
| 620 | // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to |
| 621 | // specify whether the default allocation function can throw or never throws. |
| 622 | // If the allocation function never throws, user should define it to a non-zero |
| 623 | // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`). |
| 624 | // If the allocation function can throw, user should leave it undefined or |
| 625 | // define it to zero. |
| 626 | // |
| 627 | // allocator_is_nothrow<Alloc> is a traits class that derives from |
| 628 | // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized |
| 629 | // for Alloc = std::allocator<T> for any type T according to the state of |
| 630 | // ABSL_ALLOCATOR_NOTHROW. |
| 631 | // |
| 632 | // default_allocator_is_nothrow is a class that derives from std::true_type |
| 633 | // when the default allocator (global operator new) never throws, and |
| 634 | // std::false_type when it can throw. It is a convenience shorthand for writing |
| 635 | // allocator_is_nothrow<std::allocator<T>> (T can be any type). |
| 636 | // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from |
| 637 | // the same type for all T, because users should specialize neither |
| 638 | // allocator_is_nothrow nor std::allocator. |
| 639 | template <typename Alloc> |
| 640 | struct allocator_is_nothrow |
| 641 | : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc, |
| 642 | std::false_type> {}; |
| 643 | |
| 644 | #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW |
| 645 | template <typename T> |
| 646 | struct allocator_is_nothrow<std::allocator<T>> : std::true_type {}; |
| 647 | struct default_allocator_is_nothrow : std::true_type {}; |
| 648 | #else |
| 649 | struct default_allocator_is_nothrow : std::false_type {}; |
| 650 | #endif |
| 651 | |
| 652 | namespace memory_internal { |
| 653 | template <typename Allocator, typename Iterator, typename... Args> |
| 654 | void ConstructRange(Allocator& alloc, Iterator first, Iterator last, |
| 655 | const Args&... args) { |
| 656 | for (Iterator cur = first; cur != last; ++cur) { |
| 657 | ABSL_INTERNAL_TRY { |
| 658 | std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
| 659 | args...); |
| 660 | } |
| 661 | ABSL_INTERNAL_CATCH_ANY { |
| 662 | while (cur != first) { |
| 663 | --cur; |
| 664 | std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
| 665 | } |
| 666 | ABSL_INTERNAL_RETHROW; |
| 667 | } |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | template <typename Allocator, typename Iterator, typename InputIterator> |
| 672 | void CopyRange(Allocator& alloc, Iterator destination, InputIterator first, |
| 673 | InputIterator last) { |
| 674 | for (Iterator cur = destination; first != last; |
| 675 | static_cast<void>(++cur), static_cast<void>(++first)) { |
| 676 | ABSL_INTERNAL_TRY { |
| 677 | std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
| 678 | *first); |
| 679 | } |
| 680 | ABSL_INTERNAL_CATCH_ANY { |
| 681 | while (cur != destination) { |
| 682 | --cur; |
| 683 | std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
| 684 | } |
| 685 | ABSL_INTERNAL_RETHROW; |
| 686 | } |
| 687 | } |
| 688 | } |
| 689 | } // namespace memory_internal |
| 690 | } // namespace absl |
| 691 | |
| 692 | #endif // ABSL_MEMORY_MEMORY_H_ |