blob: 4b05f4955ee0f55743ae83ab5d4e897efe5acf21 [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001//
2// Copyright 2018 The Abseil Authors.
3//
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7//
8// https://www.apache.org/licenses/LICENSE-2.0
9//
10// Unless required by applicable law or agreed to in writing, software
11// distributed under the License is distributed on an "AS IS" BASIS,
12// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13// See the License for the specific language governing permissions and
14// limitations under the License.
15
16#include "absl/debugging/internal/stack_consumption.h"
17
18#ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION
19
20#include <signal.h>
21#include <sys/mman.h>
22#include <unistd.h>
23
24#include <string.h>
25
26#include "absl/base/attributes.h"
27#include "absl/base/internal/raw_logging.h"
28
29namespace absl {
30namespace debugging_internal {
31namespace {
32
33// This code requires that we know the direction in which the stack
34// grows. It is commonly believed that this can be detected by putting
35// a variable on the stack and then passing its address to a function
36// that compares the address of this variable to the address of a
37// variable on the function's own stack. However, this is unspecified
38// behavior in C++: If two pointers p and q of the same type point to
39// different objects that are not members of the same object or
40// elements of the same array or to different functions, or if only
41// one of them is null, the results of p<q, p>q, p<=q, and p>=q are
42// unspecified. Therefore, instead we hardcode the direction of the
43// stack on platforms we know about.
44#if defined(__i386__) || defined(__x86_64__) || defined(__ppc__)
45constexpr bool kStackGrowsDown = true;
46#else
47#error Need to define kStackGrowsDown
48#endif
49
50// To measure the stack footprint of some code, we create a signal handler
51// (for SIGUSR2 say) that exercises this code on an alternate stack. This
52// alternate stack is initialized to some known pattern (0x55, 0x55, 0x55,
53// ...). We then self-send this signal, and after the signal handler returns,
54// look at the alternate stack buffer to see what portion has been touched.
55//
56// This trick gives us the the stack footprint of the signal handler. But the
57// signal handler, even before the code for it is exercised, consumes some
58// stack already. We however only want the stack usage of the code inside the
59// signal handler. To measure this accurately, we install two signal handlers:
60// one that does nothing and just returns, and the user-provided signal
61// handler. The difference between the stack consumption of these two signals
62// handlers should give us the stack foorprint of interest.
63
64void EmptySignalHandler(int) {}
65
66// This is arbitrary value, and could be increase further, at the cost of
67// memset()ting it all to known sentinel value.
68constexpr int kAlternateStackSize = 64 << 10; // 64KiB
69
70constexpr int kSafetyMargin = 32;
71constexpr char kAlternateStackFillValue = 0x55;
72
73// These helper functions look at the alternate stack buffer, and figure
74// out what portion of this buffer has been touched - this is the stack
75// consumption of the signal handler running on this alternate stack.
76// This function will return -1 if the alternate stack buffer has not been
77// touched. It will abort the program if the buffer has overflowed or is about
78// to overflow.
79int GetStackConsumption(const void* const altstack) {
80 const char* begin;
81 int increment;
82 if (kStackGrowsDown) {
83 begin = reinterpret_cast<const char*>(altstack);
84 increment = 1;
85 } else {
86 begin = reinterpret_cast<const char*>(altstack) + kAlternateStackSize - 1;
87 increment = -1;
88 }
89
90 for (int usage_count = kAlternateStackSize; usage_count > 0; --usage_count) {
91 if (*begin != kAlternateStackFillValue) {
92 ABSL_RAW_CHECK(usage_count <= kAlternateStackSize - kSafetyMargin,
93 "Buffer has overflowed or is about to overflow");
94 return usage_count;
95 }
96 begin += increment;
97 }
98
99 ABSL_RAW_LOG(FATAL, "Unreachable code");
100 return -1;
101}
102
103} // namespace
104
105int GetSignalHandlerStackConsumption(void (*signal_handler)(int)) {
106 // The alt-signal-stack cannot be heap allocated because there is a
107 // bug in glibc-2.2 where some signal handler setup code looks at the
108 // current stack pointer to figure out what thread is currently running.
109 // Therefore, the alternate stack must be allocated from the main stack
110 // itself.
111 void* altstack = mmap(nullptr, kAlternateStackSize, PROT_READ | PROT_WRITE,
112 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
113 ABSL_RAW_CHECK(altstack != MAP_FAILED, "mmap() failed");
114
115 // Set up the alt-signal-stack (and save the older one).
116 stack_t sigstk;
117 memset(&sigstk, 0, sizeof(sigstk));
118 stack_t old_sigstk;
119 sigstk.ss_sp = altstack;
120 sigstk.ss_size = kAlternateStackSize;
121 sigstk.ss_flags = 0;
122 ABSL_RAW_CHECK(sigaltstack(&sigstk, &old_sigstk) == 0,
123 "sigaltstack() failed");
124
125 // Set up SIGUSR1 and SIGUSR2 signal handlers (and save the older ones).
126 struct sigaction sa;
127 memset(&sa, 0, sizeof(sa));
128 struct sigaction old_sa1, old_sa2;
129 sigemptyset(&sa.sa_mask);
130 sa.sa_flags = SA_ONSTACK;
131
132 // SIGUSR1 maps to EmptySignalHandler.
133 sa.sa_handler = EmptySignalHandler;
134 ABSL_RAW_CHECK(sigaction(SIGUSR1, &sa, &old_sa1) == 0, "sigaction() failed");
135
136 // SIGUSR2 maps to signal_handler.
137 sa.sa_handler = signal_handler;
138 ABSL_RAW_CHECK(sigaction(SIGUSR2, &sa, &old_sa2) == 0, "sigaction() failed");
139
140 // Send SIGUSR1 signal and measure the stack consumption of the empty
141 // signal handler.
142 // The first signal might use more stack space. Run once and ignore the
143 // results to get that out of the way.
144 ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");
145
146 memset(altstack, kAlternateStackFillValue, kAlternateStackSize);
147 ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");
148 int base_stack_consumption = GetStackConsumption(altstack);
149
150 // Send SIGUSR2 signal and measure the stack consumption of signal_handler.
151 ABSL_RAW_CHECK(kill(getpid(), SIGUSR2) == 0, "kill() failed");
152 int signal_handler_stack_consumption = GetStackConsumption(altstack);
153
154 // Now restore the old alt-signal-stack and signal handlers.
155 ABSL_RAW_CHECK(sigaltstack(&old_sigstk, nullptr) == 0,
156 "sigaltstack() failed");
157 ABSL_RAW_CHECK(sigaction(SIGUSR1, &old_sa1, nullptr) == 0,
158 "sigaction() failed");
159 ABSL_RAW_CHECK(sigaction(SIGUSR2, &old_sa2, nullptr) == 0,
160 "sigaction() failed");
161
162 ABSL_RAW_CHECK(munmap(altstack, kAlternateStackSize) == 0, "munmap() failed");
163 if (signal_handler_stack_consumption != -1 && base_stack_consumption != -1) {
164 return signal_handler_stack_consumption - base_stack_consumption;
165 }
166 return -1;
167}
168
169} // namespace debugging_internal
170} // namespace absl
171
172#endif // ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION