Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2018 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | // |
| 15 | // ----------------------------------------------------------------------------- |
| 16 | // File: node_hash_set.h |
| 17 | // ----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // An `absl::node_hash_set<T>` is an unordered associative container designed to |
| 20 | // be a more efficient replacement for `std::unordered_set`. Like |
| 21 | // `unordered_set`, search, insertion, and deletion of map elements can be done |
| 22 | // as an `O(1)` operation. However, `node_hash_set` (and other unordered |
| 23 | // associative containers known as the collection of Abseil "Swiss tables") |
| 24 | // contain other optimizations that result in both memory and computation |
| 25 | // advantages. |
| 26 | // |
| 27 | // In most cases, your default choice for a hash table should be a map of type |
| 28 | // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need |
| 29 | // pointer stability, a `node_hash_set` should be your preferred choice. As |
| 30 | // well, if you are migrating your code from using `std::unordered_set`, a |
| 31 | // `node_hash_set` should be an easy migration. Consider migrating to |
| 32 | // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set` |
| 33 | // upon further review. |
| 34 | |
| 35 | #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_ |
| 36 | #define ABSL_CONTAINER_NODE_HASH_SET_H_ |
| 37 | |
| 38 | #include <type_traits> |
| 39 | |
| 40 | #include "absl/algorithm/container.h" |
| 41 | #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export |
| 42 | #include "absl/container/internal/node_hash_policy.h" |
| 43 | #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export |
| 44 | #include "absl/memory/memory.h" |
| 45 | |
| 46 | namespace absl { |
| 47 | namespace container_internal { |
| 48 | template <typename T> |
| 49 | struct NodeHashSetPolicy; |
| 50 | } // namespace container_internal |
| 51 | |
| 52 | // ----------------------------------------------------------------------------- |
| 53 | // absl::node_hash_set |
| 54 | // ----------------------------------------------------------------------------- |
| 55 | // |
| 56 | // An `absl::node_hash_set<T>` is an unordered associative container which |
| 57 | // has been optimized for both speed and memory footprint in most common use |
| 58 | // cases. Its interface is similar to that of `std::unordered_set<T>` with the |
| 59 | // following notable differences: |
| 60 | // |
| 61 | // * Supports heterogeneous lookup, through `find()`, `operator[]()` and |
| 62 | // `insert()`, provided that the map is provided a compatible heterogeneous |
| 63 | // hashing function and equality operator. |
| 64 | // * Contains a `capacity()` member function indicating the number of element |
| 65 | // slots (open, deleted, and empty) within the hash set. |
| 66 | // * Returns `void` from the `erase(iterator)` overload. |
| 67 | // |
| 68 | // By default, `node_hash_set` uses the `absl::Hash` hashing framework. |
| 69 | // All fundamental and Abseil types that support the `absl::Hash` framework have |
| 70 | // a compatible equality operator for comparing insertions into `node_hash_set`. |
| 71 | // If your type is not yet supported by the `absl::Hash` framework, see |
| 72 | // absl/hash/hash.h for information on extending Abseil hashing to user-defined |
| 73 | // types. |
| 74 | // |
| 75 | // Example: |
| 76 | // |
| 77 | // // Create a node hash set of three strings |
| 78 | // absl::node_hash_map<std::string, std::string> ducks = |
| 79 | // {"huey", "dewey"}, "louie"}; |
| 80 | // |
| 81 | // // Insert a new element into the node hash map |
| 82 | // ducks.insert("donald"}; |
| 83 | // |
| 84 | // // Force a rehash of the node hash map |
| 85 | // ducks.rehash(0); |
| 86 | // |
| 87 | // // See if "dewey" is present |
| 88 | // if (ducks.contains("dewey")) { |
| 89 | // std::cout << "We found dewey!" << std::endl; |
| 90 | // } |
| 91 | template <class T, class Hash = absl::container_internal::hash_default_hash<T>, |
| 92 | class Eq = absl::container_internal::hash_default_eq<T>, |
| 93 | class Alloc = std::allocator<T>> |
| 94 | class node_hash_set |
| 95 | : public absl::container_internal::raw_hash_set< |
| 96 | absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> { |
| 97 | using Base = typename node_hash_set::raw_hash_set; |
| 98 | |
| 99 | public: |
| 100 | // Constructors and Assignment Operators |
| 101 | // |
| 102 | // A node_hash_set supports the same overload set as `std::unordered_map` |
| 103 | // for construction and assignment: |
| 104 | // |
| 105 | // * Default constructor |
| 106 | // |
| 107 | // // No allocation for the table's elements is made. |
| 108 | // absl::node_hash_set<std::string> set1; |
| 109 | // |
| 110 | // * Initializer List constructor |
| 111 | // |
| 112 | // absl::node_hash_set<std::string> set2 = |
| 113 | // {{"huey"}, {"dewey"}, {"louie"},}; |
| 114 | // |
| 115 | // * Copy constructor |
| 116 | // |
| 117 | // absl::node_hash_set<std::string> set3(set2); |
| 118 | // |
| 119 | // * Copy assignment operator |
| 120 | // |
| 121 | // // Hash functor and Comparator are copied as well |
| 122 | // absl::node_hash_set<std::string> set4; |
| 123 | // set4 = set3; |
| 124 | // |
| 125 | // * Move constructor |
| 126 | // |
| 127 | // // Move is guaranteed efficient |
| 128 | // absl::node_hash_set<std::string> set5(std::move(set4)); |
| 129 | // |
| 130 | // * Move assignment operator |
| 131 | // |
| 132 | // // May be efficient if allocators are compatible |
| 133 | // absl::node_hash_set<std::string> set6; |
| 134 | // set6 = std::move(set5); |
| 135 | // |
| 136 | // * Range constructor |
| 137 | // |
| 138 | // std::vector<std::string> v = {"a", "b"}; |
| 139 | // absl::node_hash_set<std::string> set7(v.begin(), v.end()); |
| 140 | node_hash_set() {} |
| 141 | using Base::Base; |
| 142 | |
| 143 | // node_hash_set::begin() |
| 144 | // |
| 145 | // Returns an iterator to the beginning of the `node_hash_set`. |
| 146 | using Base::begin; |
| 147 | |
| 148 | // node_hash_set::cbegin() |
| 149 | // |
| 150 | // Returns a const iterator to the beginning of the `node_hash_set`. |
| 151 | using Base::cbegin; |
| 152 | |
| 153 | // node_hash_set::cend() |
| 154 | // |
| 155 | // Returns a const iterator to the end of the `node_hash_set`. |
| 156 | using Base::cend; |
| 157 | |
| 158 | // node_hash_set::end() |
| 159 | // |
| 160 | // Returns an iterator to the end of the `node_hash_set`. |
| 161 | using Base::end; |
| 162 | |
| 163 | // node_hash_set::capacity() |
| 164 | // |
| 165 | // Returns the number of element slots (assigned, deleted, and empty) |
| 166 | // available within the `node_hash_set`. |
| 167 | // |
| 168 | // NOTE: this member function is particular to `absl::node_hash_set` and is |
| 169 | // not provided in the `std::unordered_map` API. |
| 170 | using Base::capacity; |
| 171 | |
| 172 | // node_hash_set::empty() |
| 173 | // |
| 174 | // Returns whether or not the `node_hash_set` is empty. |
| 175 | using Base::empty; |
| 176 | |
| 177 | // node_hash_set::max_size() |
| 178 | // |
| 179 | // Returns the largest theoretical possible number of elements within a |
| 180 | // `node_hash_set` under current memory constraints. This value can be thought |
| 181 | // of the largest value of `std::distance(begin(), end())` for a |
| 182 | // `node_hash_set<T>`. |
| 183 | using Base::max_size; |
| 184 | |
| 185 | // node_hash_set::size() |
| 186 | // |
| 187 | // Returns the number of elements currently within the `node_hash_set`. |
| 188 | using Base::size; |
| 189 | |
| 190 | // node_hash_set::clear() |
| 191 | // |
| 192 | // Removes all elements from the `node_hash_set`. Invalidates any references, |
| 193 | // pointers, or iterators referring to contained elements. |
| 194 | // |
| 195 | // NOTE: this operation may shrink the underlying buffer. To avoid shrinking |
| 196 | // the underlying buffer call `erase(begin(), end())`. |
| 197 | using Base::clear; |
| 198 | |
| 199 | // node_hash_set::erase() |
| 200 | // |
| 201 | // Erases elements within the `node_hash_set`. Erasing does not trigger a |
| 202 | // rehash. Overloads are listed below. |
| 203 | // |
| 204 | // void erase(const_iterator pos): |
| 205 | // |
| 206 | // Erases the element at `position` of the `node_hash_set`, returning |
| 207 | // `void`. |
| 208 | // |
| 209 | // NOTE: this return behavior is different than that of STL containers in |
| 210 | // general and `std::unordered_map` in particular. |
| 211 | // |
| 212 | // iterator erase(const_iterator first, const_iterator last): |
| 213 | // |
| 214 | // Erases the elements in the open interval [`first`, `last`), returning an |
| 215 | // iterator pointing to `last`. |
| 216 | // |
| 217 | // size_type erase(const key_type& key): |
| 218 | // |
| 219 | // Erases the element with the matching key, if it exists. |
| 220 | using Base::erase; |
| 221 | |
| 222 | // node_hash_set::insert() |
| 223 | // |
| 224 | // Inserts an element of the specified value into the `node_hash_set`, |
| 225 | // returning an iterator pointing to the newly inserted element, provided that |
| 226 | // an element with the given key does not already exist. If rehashing occurs |
| 227 | // due to the insertion, all iterators are invalidated. Overloads are listed |
| 228 | // below. |
| 229 | // |
| 230 | // std::pair<iterator,bool> insert(const T& value): |
| 231 | // |
| 232 | // Inserts a value into the `node_hash_set`. Returns a pair consisting of an |
| 233 | // iterator to the inserted element (or to the element that prevented the |
| 234 | // insertion) and a bool denoting whether the insertion took place. |
| 235 | // |
| 236 | // std::pair<iterator,bool> insert(T&& value): |
| 237 | // |
| 238 | // Inserts a moveable value into the `node_hash_set`. Returns a pair |
| 239 | // consisting of an iterator to the inserted element (or to the element that |
| 240 | // prevented the insertion) and a bool denoting whether the insertion took |
| 241 | // place. |
| 242 | // |
| 243 | // iterator insert(const_iterator hint, const T& value): |
| 244 | // iterator insert(const_iterator hint, T&& value): |
| 245 | // |
| 246 | // Inserts a value, using the position of `hint` as a non-binding suggestion |
| 247 | // for where to begin the insertion search. Returns an iterator to the |
| 248 | // inserted element, or to the existing element that prevented the |
| 249 | // insertion. |
| 250 | // |
| 251 | // void insert(InputIterator first, InputIterator last): |
| 252 | // |
| 253 | // Inserts a range of values [`first`, `last`). |
| 254 | // |
| 255 | // NOTE: Although the STL does not specify which element may be inserted if |
| 256 | // multiple keys compare equivalently, for `node_hash_set` we guarantee the |
| 257 | // first match is inserted. |
| 258 | // |
| 259 | // void insert(std::initializer_list<T> ilist): |
| 260 | // |
| 261 | // Inserts the elements within the initializer list `ilist`. |
| 262 | // |
| 263 | // NOTE: Although the STL does not specify which element may be inserted if |
| 264 | // multiple keys compare equivalently within the initializer list, for |
| 265 | // `node_hash_set` we guarantee the first match is inserted. |
| 266 | using Base::insert; |
| 267 | |
| 268 | // node_hash_set::emplace() |
| 269 | // |
| 270 | // Inserts an element of the specified value by constructing it in-place |
| 271 | // within the `node_hash_set`, provided that no element with the given key |
| 272 | // already exists. |
| 273 | // |
| 274 | // The element may be constructed even if there already is an element with the |
| 275 | // key in the container, in which case the newly constructed element will be |
| 276 | // destroyed immediately. |
| 277 | // |
| 278 | // If rehashing occurs due to the insertion, all iterators are invalidated. |
| 279 | using Base::emplace; |
| 280 | |
| 281 | // node_hash_set::emplace_hint() |
| 282 | // |
| 283 | // Inserts an element of the specified value by constructing it in-place |
| 284 | // within the `node_hash_set`, using the position of `hint` as a non-binding |
| 285 | // suggestion for where to begin the insertion search, and only inserts |
| 286 | // provided that no element with the given key already exists. |
| 287 | // |
| 288 | // The element may be constructed even if there already is an element with the |
| 289 | // key in the container, in which case the newly constructed element will be |
| 290 | // destroyed immediately. |
| 291 | // |
| 292 | // If rehashing occurs due to the insertion, all iterators are invalidated. |
| 293 | using Base::emplace_hint; |
| 294 | |
| 295 | // node_hash_set::extract() |
| 296 | // |
| 297 | // Extracts the indicated element, erasing it in the process, and returns it |
| 298 | // as a C++17-compatible node handle. Overloads are listed below. |
| 299 | // |
| 300 | // node_type extract(const_iterator position): |
| 301 | // |
| 302 | // Extracts the element at the indicated position and returns a node handle |
| 303 | // owning that extracted data. |
| 304 | // |
| 305 | // node_type extract(const key_type& x): |
| 306 | // |
| 307 | // Extracts the element with the key matching the passed key value and |
| 308 | // returns a node handle owning that extracted data. If the `node_hash_set` |
| 309 | // does not contain an element with a matching key, this function returns an |
| 310 | // empty node handle. |
| 311 | using Base::extract; |
| 312 | |
| 313 | // node_hash_set::merge() |
| 314 | // |
| 315 | // Extracts elements from a given `source` flat hash map into this |
| 316 | // `node_hash_set`. If the destination `node_hash_set` already contains an |
| 317 | // element with an equivalent key, that element is not extracted. |
| 318 | using Base::merge; |
| 319 | |
| 320 | // node_hash_set::swap(node_hash_set& other) |
| 321 | // |
| 322 | // Exchanges the contents of this `node_hash_set` with those of the `other` |
| 323 | // flat hash map, avoiding invocation of any move, copy, or swap operations on |
| 324 | // individual elements. |
| 325 | // |
| 326 | // All iterators and references on the `node_hash_set` remain valid, excepting |
| 327 | // for the past-the-end iterator, which is invalidated. |
| 328 | // |
| 329 | // `swap()` requires that the flat hash set's hashing and key equivalence |
| 330 | // functions be Swappable, and are exchaged using unqualified calls to |
| 331 | // non-member `swap()`. If the map's allocator has |
| 332 | // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` |
| 333 | // set to `true`, the allocators are also exchanged using an unqualified call |
| 334 | // to non-member `swap()`; otherwise, the allocators are not swapped. |
| 335 | using Base::swap; |
| 336 | |
| 337 | // node_hash_set::rehash(count) |
| 338 | // |
| 339 | // Rehashes the `node_hash_set`, setting the number of slots to be at least |
| 340 | // the passed value. If the new number of slots increases the load factor more |
| 341 | // than the current maximum load factor |
| 342 | // (`count` < `size()` / `max_load_factor()`), then the new number of slots |
| 343 | // will be at least `size()` / `max_load_factor()`. |
| 344 | // |
| 345 | // To force a rehash, pass rehash(0). |
| 346 | // |
| 347 | // NOTE: unlike behavior in `std::unordered_set`, references are also |
| 348 | // invalidated upon a `rehash()`. |
| 349 | using Base::rehash; |
| 350 | |
| 351 | // node_hash_set::reserve(count) |
| 352 | // |
| 353 | // Sets the number of slots in the `node_hash_set` to the number needed to |
| 354 | // accommodate at least `count` total elements without exceeding the current |
| 355 | // maximum load factor, and may rehash the container if needed. |
| 356 | using Base::reserve; |
| 357 | |
| 358 | // node_hash_set::contains() |
| 359 | // |
| 360 | // Determines whether an element comparing equal to the given `key` exists |
| 361 | // within the `node_hash_set`, returning `true` if so or `false` otherwise. |
| 362 | using Base::contains; |
| 363 | |
| 364 | // node_hash_set::count(const Key& key) const |
| 365 | // |
| 366 | // Returns the number of elements comparing equal to the given `key` within |
| 367 | // the `node_hash_set`. note that this function will return either `1` or `0` |
| 368 | // since duplicate elements are not allowed within a `node_hash_set`. |
| 369 | using Base::count; |
| 370 | |
| 371 | // node_hash_set::equal_range() |
| 372 | // |
| 373 | // Returns a closed range [first, last], defined by a `std::pair` of two |
| 374 | // iterators, containing all elements with the passed key in the |
| 375 | // `node_hash_set`. |
| 376 | using Base::equal_range; |
| 377 | |
| 378 | // node_hash_set::find() |
| 379 | // |
| 380 | // Finds an element with the passed `key` within the `node_hash_set`. |
| 381 | using Base::find; |
| 382 | |
| 383 | // node_hash_set::bucket_count() |
| 384 | // |
| 385 | // Returns the number of "buckets" within the `node_hash_set`. Note that |
| 386 | // because a flat hash map contains all elements within its internal storage, |
| 387 | // this value simply equals the current capacity of the `node_hash_set`. |
| 388 | using Base::bucket_count; |
| 389 | |
| 390 | // node_hash_set::load_factor() |
| 391 | // |
| 392 | // Returns the current load factor of the `node_hash_set` (the average number |
| 393 | // of slots occupied with a value within the hash map). |
| 394 | using Base::load_factor; |
| 395 | |
| 396 | // node_hash_set::max_load_factor() |
| 397 | // |
| 398 | // Manages the maximum load factor of the `node_hash_set`. Overloads are |
| 399 | // listed below. |
| 400 | // |
| 401 | // float node_hash_set::max_load_factor() |
| 402 | // |
| 403 | // Returns the current maximum load factor of the `node_hash_set`. |
| 404 | // |
| 405 | // void node_hash_set::max_load_factor(float ml) |
| 406 | // |
| 407 | // Sets the maximum load factor of the `node_hash_set` to the passed value. |
| 408 | // |
| 409 | // NOTE: This overload is provided only for API compatibility with the STL; |
| 410 | // `node_hash_set` will ignore any set load factor and manage its rehashing |
| 411 | // internally as an implementation detail. |
| 412 | using Base::max_load_factor; |
| 413 | |
| 414 | // node_hash_set::get_allocator() |
| 415 | // |
| 416 | // Returns the allocator function associated with this `node_hash_set`. |
| 417 | using Base::get_allocator; |
| 418 | |
| 419 | // node_hash_set::hash_function() |
| 420 | // |
| 421 | // Returns the hashing function used to hash the keys within this |
| 422 | // `node_hash_set`. |
| 423 | using Base::hash_function; |
| 424 | |
| 425 | // node_hash_set::key_eq() |
| 426 | // |
| 427 | // Returns the function used for comparing keys equality. |
| 428 | using Base::key_eq; |
| 429 | |
| 430 | ABSL_DEPRECATED("Call `hash_function()` instead.") |
| 431 | typename Base::hasher hash_funct() { return this->hash_function(); } |
| 432 | |
| 433 | ABSL_DEPRECATED("Call `rehash()` instead.") |
| 434 | void resize(typename Base::size_type hint) { this->rehash(hint); } |
| 435 | }; |
| 436 | |
| 437 | namespace container_internal { |
| 438 | |
| 439 | template <class T> |
| 440 | struct NodeHashSetPolicy |
| 441 | : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> { |
| 442 | using key_type = T; |
| 443 | using init_type = T; |
| 444 | using constant_iterators = std::true_type; |
| 445 | |
| 446 | template <class Allocator, class... Args> |
| 447 | static T* new_element(Allocator* alloc, Args&&... args) { |
| 448 | using ValueAlloc = |
| 449 | typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; |
| 450 | ValueAlloc value_alloc(*alloc); |
| 451 | T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1); |
| 452 | absl::allocator_traits<ValueAlloc>::construct(value_alloc, res, |
| 453 | std::forward<Args>(args)...); |
| 454 | return res; |
| 455 | } |
| 456 | |
| 457 | template <class Allocator> |
| 458 | static void delete_element(Allocator* alloc, T* elem) { |
| 459 | using ValueAlloc = |
| 460 | typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; |
| 461 | ValueAlloc value_alloc(*alloc); |
| 462 | absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem); |
| 463 | absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1); |
| 464 | } |
| 465 | |
| 466 | template <class F, class... Args> |
| 467 | static decltype(absl::container_internal::DecomposeValue( |
| 468 | std::declval<F>(), std::declval<Args>()...)) |
| 469 | apply(F&& f, Args&&... args) { |
| 470 | return absl::container_internal::DecomposeValue( |
| 471 | std::forward<F>(f), std::forward<Args>(args)...); |
| 472 | } |
| 473 | |
| 474 | static size_t element_space_used(const T*) { return sizeof(T); } |
| 475 | }; |
| 476 | } // namespace container_internal |
| 477 | |
| 478 | namespace container_algorithm_internal { |
| 479 | |
| 480 | // Specialization of trait in absl/algorithm/container.h |
| 481 | template <class Key, class Hash, class KeyEqual, class Allocator> |
| 482 | struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>> |
| 483 | : std::true_type {}; |
| 484 | |
| 485 | } // namespace container_algorithm_internal |
| 486 | } // namespace absl |
| 487 | |
| 488 | #endif // ABSL_CONTAINER_NODE_HASH_SET_H_ |