blob: 7dad120ad126b6599b0c4434407ba215e1c3fbad [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2018 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
16#define ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
17
18#include <tuple>
19#include <type_traits>
20#include <utility>
21
22#include "absl/base/internal/throw_delegate.h"
23#include "absl/container/internal/container_memory.h"
24#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
25
26namespace absl {
27namespace container_internal {
28
29template <class Policy, class Hash, class Eq, class Alloc>
30class raw_hash_map : public raw_hash_set<Policy, Hash, Eq, Alloc> {
31 // P is Policy. It's passed as a template argument to support maps that have
32 // incomplete types as values, as in unordered_map<K, IncompleteType>.
33 // MappedReference<> may be a non-reference type.
34 template <class P>
35 using MappedReference = decltype(P::value(
36 std::addressof(std::declval<typename raw_hash_map::reference>())));
37
38 // MappedConstReference<> may be a non-reference type.
39 template <class P>
40 using MappedConstReference = decltype(P::value(
41 std::addressof(std::declval<typename raw_hash_map::const_reference>())));
42
43 using KeyArgImpl =
44 KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
45
46 public:
47 using key_type = typename Policy::key_type;
48 using mapped_type = typename Policy::mapped_type;
49 template <class K>
50 using key_arg = typename KeyArgImpl::template type<K, key_type>;
51
52 static_assert(!std::is_reference<key_type>::value, "");
53 // TODO(alkis): remove this assertion and verify that reference mapped_type is
54 // supported.
55 static_assert(!std::is_reference<mapped_type>::value, "");
56
57 using iterator = typename raw_hash_map::raw_hash_set::iterator;
58 using const_iterator = typename raw_hash_map::raw_hash_set::const_iterator;
59
60 raw_hash_map() {}
61 using raw_hash_map::raw_hash_set::raw_hash_set;
62
63 // The last two template parameters ensure that both arguments are rvalues
64 // (lvalue arguments are handled by the overloads below). This is necessary
65 // for supporting bitfield arguments.
66 //
67 // union { int n : 1; };
68 // flat_hash_map<int, int> m;
69 // m.insert_or_assign(n, n);
70 template <class K = key_type, class V = mapped_type, K* = nullptr,
71 V* = nullptr>
72 std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) {
73 return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v));
74 }
75
76 template <class K = key_type, class V = mapped_type, K* = nullptr>
77 std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) {
78 return insert_or_assign_impl(std::forward<K>(k), v);
79 }
80
81 template <class K = key_type, class V = mapped_type, V* = nullptr>
82 std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) {
83 return insert_or_assign_impl(k, std::forward<V>(v));
84 }
85
86 template <class K = key_type, class V = mapped_type>
87 std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) {
88 return insert_or_assign_impl(k, v);
89 }
90
91 template <class K = key_type, class V = mapped_type, K* = nullptr,
92 V* = nullptr>
93 iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) {
94 return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first;
95 }
96
97 template <class K = key_type, class V = mapped_type, K* = nullptr>
98 iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) {
99 return insert_or_assign(std::forward<K>(k), v).first;
100 }
101
102 template <class K = key_type, class V = mapped_type, V* = nullptr>
103 iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) {
104 return insert_or_assign(k, std::forward<V>(v)).first;
105 }
106
107 template <class K = key_type, class V = mapped_type>
108 iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) {
109 return insert_or_assign(k, v).first;
110 }
111
112 // All `try_emplace()` overloads make the same guarantees regarding rvalue
113 // arguments as `std::unordered_map::try_emplace()`, namely that these
114 // functions will not move from rvalue arguments if insertions do not happen.
115 template <class K = key_type, class... Args,
116 typename std::enable_if<
117 !std::is_convertible<K, const_iterator>::value, int>::type = 0,
118 K* = nullptr>
119 std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) {
120 return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
121 }
122
123 template <class K = key_type, class... Args,
124 typename std::enable_if<
125 !std::is_convertible<K, const_iterator>::value, int>::type = 0>
126 std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) {
127 return try_emplace_impl(k, std::forward<Args>(args)...);
128 }
129
130 template <class K = key_type, class... Args, K* = nullptr>
131 iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) {
132 return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first;
133 }
134
135 template <class K = key_type, class... Args>
136 iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) {
137 return try_emplace(k, std::forward<Args>(args)...).first;
138 }
139
140 template <class K = key_type, class P = Policy>
141 MappedReference<P> at(const key_arg<K>& key) {
142 auto it = this->find(key);
143 if (it == this->end()) {
144 base_internal::ThrowStdOutOfRange(
145 "absl::container_internal::raw_hash_map<>::at");
146 }
147 return Policy::value(&*it);
148 }
149
150 template <class K = key_type, class P = Policy>
151 MappedConstReference<P> at(const key_arg<K>& key) const {
152 auto it = this->find(key);
153 if (it == this->end()) {
154 base_internal::ThrowStdOutOfRange(
155 "absl::container_internal::raw_hash_map<>::at");
156 }
157 return Policy::value(&*it);
158 }
159
160 template <class K = key_type, class P = Policy, K* = nullptr>
161 MappedReference<P> operator[](key_arg<K>&& key) {
162 return Policy::value(&*try_emplace(std::forward<K>(key)).first);
163 }
164
165 template <class K = key_type, class P = Policy>
166 MappedReference<P> operator[](const key_arg<K>& key) {
167 return Policy::value(&*try_emplace(key).first);
168 }
169
170 private:
171 template <class K, class V>
172 std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) {
173 auto res = this->find_or_prepare_insert(k);
174 if (res.second)
175 this->emplace_at(res.first, std::forward<K>(k), std::forward<V>(v));
176 else
177 Policy::value(&*this->iterator_at(res.first)) = std::forward<V>(v);
178 return {this->iterator_at(res.first), res.second};
179 }
180
181 template <class K = key_type, class... Args>
182 std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) {
183 auto res = this->find_or_prepare_insert(k);
184 if (res.second)
185 this->emplace_at(res.first, std::piecewise_construct,
186 std::forward_as_tuple(std::forward<K>(k)),
187 std::forward_as_tuple(std::forward<Args>(args)...));
188 return {this->iterator_at(res.first), res.second};
189 }
190};
191
192} // namespace container_internal
193} // namespace absl
194
195#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_