Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2018 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/container/internal/hashtablez_sampler.h" |
| 16 | |
| 17 | #include <atomic> |
| 18 | #include <cassert> |
| 19 | #include <cmath> |
| 20 | #include <functional> |
| 21 | #include <limits> |
| 22 | |
| 23 | #include "absl/base/attributes.h" |
| 24 | #include "absl/container/internal/have_sse.h" |
| 25 | #include "absl/debugging/stacktrace.h" |
| 26 | #include "absl/memory/memory.h" |
| 27 | #include "absl/synchronization/mutex.h" |
| 28 | |
| 29 | namespace absl { |
| 30 | namespace container_internal { |
| 31 | constexpr int HashtablezInfo::kMaxStackDepth; |
| 32 | |
| 33 | namespace { |
| 34 | ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{ |
| 35 | false |
| 36 | }; |
| 37 | ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10}; |
| 38 | ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20}; |
| 39 | |
| 40 | // Returns the next pseudo-random value. |
| 41 | // pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 |
| 42 | // This is the lrand64 generator. |
| 43 | uint64_t NextRandom(uint64_t rnd) { |
| 44 | const uint64_t prng_mult = uint64_t{0x5DEECE66D}; |
| 45 | const uint64_t prng_add = 0xB; |
| 46 | const uint64_t prng_mod_power = 48; |
| 47 | const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power); |
| 48 | return (prng_mult * rnd + prng_add) & prng_mod_mask; |
| 49 | } |
| 50 | |
| 51 | // Generates a geometric variable with the specified mean. |
| 52 | // This is done by generating a random number between 0 and 1 and applying |
| 53 | // the inverse cumulative distribution function for an exponential. |
| 54 | // Specifically: Let m be the inverse of the sample period, then |
| 55 | // the probability distribution function is m*exp(-mx) so the CDF is |
| 56 | // p = 1 - exp(-mx), so |
| 57 | // q = 1 - p = exp(-mx) |
| 58 | // log_e(q) = -mx |
| 59 | // -log_e(q)/m = x |
| 60 | // log_2(q) * (-log_e(2) * 1/m) = x |
| 61 | // In the code, q is actually in the range 1 to 2**26, hence the -26 below |
| 62 | // |
| 63 | int64_t GetGeometricVariable(int64_t mean) { |
| 64 | #if ABSL_HAVE_THREAD_LOCAL |
| 65 | thread_local |
| 66 | #else // ABSL_HAVE_THREAD_LOCAL |
| 67 | // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when |
| 68 | // there are not thread locals. Thus, a single global rng is acceptable for |
| 69 | // that case. |
| 70 | static |
| 71 | #endif // ABSL_HAVE_THREAD_LOCAL |
| 72 | uint64_t rng = []() { |
| 73 | // We don't get well distributed numbers from this so we call |
| 74 | // NextRandom() a bunch to mush the bits around. We use a global_rand |
| 75 | // to handle the case where the same thread (by memory address) gets |
| 76 | // created and destroyed repeatedly. |
| 77 | ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); |
| 78 | uint64_t r = reinterpret_cast<uint64_t>(&rng) + |
| 79 | global_rand.fetch_add(1, std::memory_order_relaxed); |
| 80 | for (int i = 0; i < 20; ++i) { |
| 81 | r = NextRandom(r); |
| 82 | } |
| 83 | return r; |
| 84 | }(); |
| 85 | |
| 86 | rng = NextRandom(rng); |
| 87 | |
| 88 | // Take the top 26 bits as the random number |
| 89 | // (This plus the 1<<58 sampling bound give a max possible step of |
| 90 | // 5194297183973780480 bytes.) |
| 91 | const uint64_t prng_mod_power = 48; // Number of bits in prng |
| 92 | // The uint32_t cast is to prevent a (hard-to-reproduce) NAN |
| 93 | // under piii debug for some binaries. |
| 94 | double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0; |
| 95 | // Put the computed p-value through the CDF of a geometric. |
| 96 | double interval = (log2(q) - 26) * (-std::log(2.0) * mean); |
| 97 | |
| 98 | // Very large values of interval overflow int64_t. If we happen to |
| 99 | // hit such improbable condition, we simply cheat and clamp interval |
| 100 | // to largest supported value. |
| 101 | if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { |
| 102 | return std::numeric_limits<int64_t>::max() / 2; |
| 103 | } |
| 104 | |
| 105 | // Small values of interval are equivalent to just sampling next time. |
| 106 | if (interval < 1) { |
| 107 | return 1; |
| 108 | } |
| 109 | return static_cast<int64_t>(interval); |
| 110 | } |
| 111 | |
| 112 | } // namespace |
| 113 | |
| 114 | HashtablezSampler& HashtablezSampler::Global() { |
| 115 | static auto* sampler = new HashtablezSampler(); |
| 116 | return *sampler; |
| 117 | } |
| 118 | |
| 119 | HashtablezSampler::DisposeCallback HashtablezSampler::SetDisposeCallback( |
| 120 | DisposeCallback f) { |
| 121 | return dispose_.exchange(f, std::memory_order_relaxed); |
| 122 | } |
| 123 | |
| 124 | HashtablezInfo::HashtablezInfo() { PrepareForSampling(); } |
| 125 | HashtablezInfo::~HashtablezInfo() = default; |
| 126 | |
| 127 | void HashtablezInfo::PrepareForSampling() { |
| 128 | capacity.store(0, std::memory_order_relaxed); |
| 129 | size.store(0, std::memory_order_relaxed); |
| 130 | num_erases.store(0, std::memory_order_relaxed); |
| 131 | max_probe_length.store(0, std::memory_order_relaxed); |
| 132 | total_probe_length.store(0, std::memory_order_relaxed); |
| 133 | hashes_bitwise_or.store(0, std::memory_order_relaxed); |
| 134 | hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); |
| 135 | |
| 136 | create_time = absl::Now(); |
| 137 | // The inliner makes hardcoded skip_count difficult (especially when combined |
| 138 | // with LTO). We use the ability to exclude stacks by regex when encoding |
| 139 | // instead. |
| 140 | depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth, |
| 141 | /* skip_count= */ 0); |
| 142 | dead = nullptr; |
| 143 | } |
| 144 | |
| 145 | HashtablezSampler::HashtablezSampler() |
| 146 | : dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) { |
| 147 | absl::MutexLock l(&graveyard_.init_mu); |
| 148 | graveyard_.dead = &graveyard_; |
| 149 | } |
| 150 | |
| 151 | HashtablezSampler::~HashtablezSampler() { |
| 152 | HashtablezInfo* s = all_.load(std::memory_order_acquire); |
| 153 | while (s != nullptr) { |
| 154 | HashtablezInfo* next = s->next; |
| 155 | delete s; |
| 156 | s = next; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | void HashtablezSampler::PushNew(HashtablezInfo* sample) { |
| 161 | sample->next = all_.load(std::memory_order_relaxed); |
| 162 | while (!all_.compare_exchange_weak(sample->next, sample, |
| 163 | std::memory_order_release, |
| 164 | std::memory_order_relaxed)) { |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | void HashtablezSampler::PushDead(HashtablezInfo* sample) { |
| 169 | if (auto* dispose = dispose_.load(std::memory_order_relaxed)) { |
| 170 | dispose(*sample); |
| 171 | } |
| 172 | |
| 173 | absl::MutexLock graveyard_lock(&graveyard_.init_mu); |
| 174 | absl::MutexLock sample_lock(&sample->init_mu); |
| 175 | sample->dead = graveyard_.dead; |
| 176 | graveyard_.dead = sample; |
| 177 | } |
| 178 | |
| 179 | HashtablezInfo* HashtablezSampler::PopDead() { |
| 180 | absl::MutexLock graveyard_lock(&graveyard_.init_mu); |
| 181 | |
| 182 | // The list is circular, so eventually it collapses down to |
| 183 | // graveyard_.dead == &graveyard_ |
| 184 | // when it is empty. |
| 185 | HashtablezInfo* sample = graveyard_.dead; |
| 186 | if (sample == &graveyard_) return nullptr; |
| 187 | |
| 188 | absl::MutexLock sample_lock(&sample->init_mu); |
| 189 | graveyard_.dead = sample->dead; |
| 190 | sample->PrepareForSampling(); |
| 191 | return sample; |
| 192 | } |
| 193 | |
| 194 | HashtablezInfo* HashtablezSampler::Register() { |
| 195 | int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed); |
| 196 | if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) { |
| 197 | size_estimate_.fetch_sub(1, std::memory_order_relaxed); |
| 198 | dropped_samples_.fetch_add(1, std::memory_order_relaxed); |
| 199 | return nullptr; |
| 200 | } |
| 201 | |
| 202 | HashtablezInfo* sample = PopDead(); |
| 203 | if (sample == nullptr) { |
| 204 | // Resurrection failed. Hire a new warlock. |
| 205 | sample = new HashtablezInfo(); |
| 206 | PushNew(sample); |
| 207 | } |
| 208 | |
| 209 | return sample; |
| 210 | } |
| 211 | |
| 212 | void HashtablezSampler::Unregister(HashtablezInfo* sample) { |
| 213 | PushDead(sample); |
| 214 | size_estimate_.fetch_sub(1, std::memory_order_relaxed); |
| 215 | } |
| 216 | |
| 217 | int64_t HashtablezSampler::Iterate( |
| 218 | const std::function<void(const HashtablezInfo& stack)>& f) { |
| 219 | HashtablezInfo* s = all_.load(std::memory_order_acquire); |
| 220 | while (s != nullptr) { |
| 221 | absl::MutexLock l(&s->init_mu); |
| 222 | if (s->dead == nullptr) { |
| 223 | f(*s); |
| 224 | } |
| 225 | s = s->next; |
| 226 | } |
| 227 | |
| 228 | return dropped_samples_.load(std::memory_order_relaxed); |
| 229 | } |
| 230 | |
| 231 | HashtablezInfo* SampleSlow(int64_t* next_sample) { |
| 232 | if (kAbslContainerInternalSampleEverything) { |
| 233 | *next_sample = 1; |
| 234 | return HashtablezSampler::Global().Register(); |
| 235 | } |
| 236 | |
| 237 | bool first = *next_sample < 0; |
| 238 | *next_sample = GetGeometricVariable( |
| 239 | g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); |
| 240 | |
| 241 | // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold |
| 242 | // low enough that we will start sampling in a reasonable time, so we just use |
| 243 | // the default sampling rate. |
| 244 | if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr; |
| 245 | |
| 246 | // We will only be negative on our first count, so we should just retry in |
| 247 | // that case. |
| 248 | if (first) { |
| 249 | if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr; |
| 250 | return SampleSlow(next_sample); |
| 251 | } |
| 252 | |
| 253 | return HashtablezSampler::Global().Register(); |
| 254 | } |
| 255 | |
| 256 | #if ABSL_PER_THREAD_TLS == 1 |
| 257 | ABSL_PER_THREAD_TLS_KEYWORD int64_t global_next_sample = 0; |
| 258 | #endif // ABSL_PER_THREAD_TLS == 1 |
| 259 | |
| 260 | void UnsampleSlow(HashtablezInfo* info) { |
| 261 | HashtablezSampler::Global().Unregister(info); |
| 262 | } |
| 263 | |
| 264 | void RecordInsertSlow(HashtablezInfo* info, size_t hash, |
| 265 | size_t distance_from_desired) { |
| 266 | // SwissTables probe in groups of 16, so scale this to count items probes and |
| 267 | // not offset from desired. |
| 268 | size_t probe_length = distance_from_desired; |
| 269 | #if SWISSTABLE_HAVE_SSE2 |
| 270 | probe_length /= 16; |
| 271 | #else |
| 272 | probe_length /= 8; |
| 273 | #endif |
| 274 | |
| 275 | info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); |
| 276 | info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); |
| 277 | info->max_probe_length.store( |
| 278 | std::max(info->max_probe_length.load(std::memory_order_relaxed), |
| 279 | probe_length), |
| 280 | std::memory_order_relaxed); |
| 281 | info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed); |
| 282 | info->size.fetch_add(1, std::memory_order_relaxed); |
| 283 | } |
| 284 | |
| 285 | void SetHashtablezEnabled(bool enabled) { |
| 286 | g_hashtablez_enabled.store(enabled, std::memory_order_release); |
| 287 | } |
| 288 | |
| 289 | void SetHashtablezSampleParameter(int32_t rate) { |
| 290 | if (rate > 0) { |
| 291 | g_hashtablez_sample_parameter.store(rate, std::memory_order_release); |
| 292 | } else { |
| 293 | ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld", |
| 294 | static_cast<long long>(rate)); // NOLINT(runtime/int) |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | void SetHashtablezMaxSamples(int32_t max) { |
| 299 | if (max > 0) { |
| 300 | g_hashtablez_max_samples.store(max, std::memory_order_release); |
| 301 | } else { |
| 302 | ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld", |
| 303 | static_cast<long long>(max)); // NOLINT(runtime/int) |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | } // namespace container_internal |
| 308 | } // namespace absl |