Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2018 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | // A btree implementation of the STL set and map interfaces. A btree is smaller |
| 16 | // and generally also faster than STL set/map (refer to the benchmarks below). |
| 17 | // The red-black tree implementation of STL set/map has an overhead of 3 |
| 18 | // pointers (left, right and parent) plus the node color information for each |
| 19 | // stored value. So a set<int32_t> consumes 40 bytes for each value stored in |
| 20 | // 64-bit mode. This btree implementation stores multiple values on fixed |
| 21 | // size nodes (usually 256 bytes) and doesn't store child pointers for leaf |
| 22 | // nodes. The result is that a btree_set<int32_t> may use much less memory per |
| 23 | // stored value. For the random insertion benchmark in btree_bench.cc, a |
| 24 | // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value. |
| 25 | // |
| 26 | // The packing of multiple values on to each node of a btree has another effect |
| 27 | // besides better space utilization: better cache locality due to fewer cache |
| 28 | // lines being accessed. Better cache locality translates into faster |
| 29 | // operations. |
| 30 | // |
| 31 | // CAVEATS |
| 32 | // |
| 33 | // Insertions and deletions on a btree can cause splitting, merging or |
| 34 | // rebalancing of btree nodes. And even without these operations, insertions |
| 35 | // and deletions on a btree will move values around within a node. In both |
| 36 | // cases, the result is that insertions and deletions can invalidate iterators |
| 37 | // pointing to values other than the one being inserted/deleted. Therefore, this |
| 38 | // container does not provide pointer stability. This is notably different from |
| 39 | // STL set/map which takes care to not invalidate iterators on insert/erase |
| 40 | // except, of course, for iterators pointing to the value being erased. A |
| 41 | // partial workaround when erasing is available: erase() returns an iterator |
| 42 | // pointing to the item just after the one that was erased (or end() if none |
| 43 | // exists). |
| 44 | |
| 45 | #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ |
| 46 | #define ABSL_CONTAINER_INTERNAL_BTREE_H_ |
| 47 | |
| 48 | #include <algorithm> |
| 49 | #include <cassert> |
| 50 | #include <cstddef> |
| 51 | #include <cstdint> |
| 52 | #include <cstring> |
| 53 | #include <functional> |
| 54 | #include <iterator> |
| 55 | #include <limits> |
| 56 | #include <new> |
| 57 | #include <string> |
| 58 | #include <type_traits> |
| 59 | #include <utility> |
| 60 | |
| 61 | #include "absl/base/macros.h" |
| 62 | #include "absl/container/internal/common.h" |
| 63 | #include "absl/container/internal/compressed_tuple.h" |
| 64 | #include "absl/container/internal/container_memory.h" |
| 65 | #include "absl/container/internal/layout.h" |
| 66 | #include "absl/memory/memory.h" |
| 67 | #include "absl/meta/type_traits.h" |
| 68 | #include "absl/strings/string_view.h" |
| 69 | #include "absl/types/compare.h" |
| 70 | #include "absl/utility/utility.h" |
| 71 | |
| 72 | namespace absl { |
| 73 | namespace container_internal { |
| 74 | |
| 75 | // A helper class that indicates if the Compare parameter is a key-compare-to |
| 76 | // comparator. |
| 77 | template <typename Compare, typename T> |
| 78 | using btree_is_key_compare_to = |
| 79 | std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>, |
| 80 | absl::weak_ordering>; |
| 81 | |
| 82 | struct StringBtreeDefaultLess { |
| 83 | using is_transparent = void; |
| 84 | |
| 85 | StringBtreeDefaultLess() = default; |
| 86 | |
| 87 | // Compatibility constructor. |
| 88 | StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT |
| 89 | StringBtreeDefaultLess(std::less<string_view>) {} // NOLINT |
| 90 | |
| 91 | absl::weak_ordering operator()(absl::string_view lhs, |
| 92 | absl::string_view rhs) const { |
| 93 | return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); |
| 94 | } |
| 95 | }; |
| 96 | |
| 97 | struct StringBtreeDefaultGreater { |
| 98 | using is_transparent = void; |
| 99 | |
| 100 | StringBtreeDefaultGreater() = default; |
| 101 | |
| 102 | StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT |
| 103 | StringBtreeDefaultGreater(std::greater<string_view>) {} // NOLINT |
| 104 | |
| 105 | absl::weak_ordering operator()(absl::string_view lhs, |
| 106 | absl::string_view rhs) const { |
| 107 | return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); |
| 108 | } |
| 109 | }; |
| 110 | |
| 111 | // A helper class to convert a boolean comparison into a three-way "compare-to" |
| 112 | // comparison that returns a negative value to indicate less-than, zero to |
| 113 | // indicate equality and a positive value to indicate greater-than. This helper |
| 114 | // class is specialized for less<std::string>, greater<std::string>, |
| 115 | // less<string_view>, and greater<string_view>. |
| 116 | // |
| 117 | // key_compare_to_adapter is provided so that btree users |
| 118 | // automatically get the more efficient compare-to code when using common |
| 119 | // google string types with common comparison functors. |
| 120 | // These string-like specializations also turn on heterogeneous lookup by |
| 121 | // default. |
| 122 | template <typename Compare> |
| 123 | struct key_compare_to_adapter { |
| 124 | using type = Compare; |
| 125 | }; |
| 126 | |
| 127 | template <> |
| 128 | struct key_compare_to_adapter<std::less<std::string>> { |
| 129 | using type = StringBtreeDefaultLess; |
| 130 | }; |
| 131 | |
| 132 | template <> |
| 133 | struct key_compare_to_adapter<std::greater<std::string>> { |
| 134 | using type = StringBtreeDefaultGreater; |
| 135 | }; |
| 136 | |
| 137 | template <> |
| 138 | struct key_compare_to_adapter<std::less<absl::string_view>> { |
| 139 | using type = StringBtreeDefaultLess; |
| 140 | }; |
| 141 | |
| 142 | template <> |
| 143 | struct key_compare_to_adapter<std::greater<absl::string_view>> { |
| 144 | using type = StringBtreeDefaultGreater; |
| 145 | }; |
| 146 | |
| 147 | template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, |
| 148 | bool Multi, typename SlotPolicy> |
| 149 | struct common_params { |
| 150 | // If Compare is a common comparator for a std::string-like type, then we adapt it |
| 151 | // to use heterogeneous lookup and to be a key-compare-to comparator. |
| 152 | using key_compare = typename key_compare_to_adapter<Compare>::type; |
| 153 | // A type which indicates if we have a key-compare-to functor or a plain old |
| 154 | // key-compare functor. |
| 155 | using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; |
| 156 | |
| 157 | using allocator_type = Alloc; |
| 158 | using key_type = Key; |
| 159 | using size_type = std::make_signed<size_t>::type; |
| 160 | using difference_type = ptrdiff_t; |
| 161 | |
| 162 | // True if this is a multiset or multimap. |
| 163 | using is_multi_container = std::integral_constant<bool, Multi>; |
| 164 | |
| 165 | using slot_policy = SlotPolicy; |
| 166 | using slot_type = typename slot_policy::slot_type; |
| 167 | using value_type = typename slot_policy::value_type; |
| 168 | using init_type = typename slot_policy::mutable_value_type; |
| 169 | using pointer = value_type *; |
| 170 | using const_pointer = const value_type *; |
| 171 | using reference = value_type &; |
| 172 | using const_reference = const value_type &; |
| 173 | |
| 174 | enum { |
| 175 | kTargetNodeSize = TargetNodeSize, |
| 176 | |
| 177 | // Upper bound for the available space for values. This is largest for leaf |
| 178 | // nodes, which have overhead of at least a pointer + 4 bytes (for storing |
| 179 | // 3 field_types and an enum). |
| 180 | kNodeValueSpace = |
| 181 | TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4), |
| 182 | }; |
| 183 | |
| 184 | // This is an integral type large enough to hold as many |
| 185 | // ValueSize-values as will fit a node of TargetNodeSize bytes. |
| 186 | using node_count_type = |
| 187 | absl::conditional_t<(kNodeValueSpace / sizeof(value_type) > |
| 188 | (std::numeric_limits<uint8_t>::max)()), |
| 189 | uint16_t, uint8_t>; // NOLINT |
| 190 | |
| 191 | // The following methods are necessary for passing this struct as PolicyTraits |
| 192 | // for node_handle and/or are used within btree. |
| 193 | static value_type &element(slot_type *slot) { |
| 194 | return slot_policy::element(slot); |
| 195 | } |
| 196 | static const value_type &element(const slot_type *slot) { |
| 197 | return slot_policy::element(slot); |
| 198 | } |
| 199 | template <class... Args> |
| 200 | static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { |
| 201 | slot_policy::construct(alloc, slot, std::forward<Args>(args)...); |
| 202 | } |
| 203 | static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { |
| 204 | slot_policy::construct(alloc, slot, other); |
| 205 | } |
| 206 | static void destroy(Alloc *alloc, slot_type *slot) { |
| 207 | slot_policy::destroy(alloc, slot); |
| 208 | } |
| 209 | static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) { |
| 210 | construct(alloc, new_slot, old_slot); |
| 211 | destroy(alloc, old_slot); |
| 212 | } |
| 213 | static void swap(Alloc *alloc, slot_type *a, slot_type *b) { |
| 214 | slot_policy::swap(alloc, a, b); |
| 215 | } |
| 216 | static void move(Alloc *alloc, slot_type *src, slot_type *dest) { |
| 217 | slot_policy::move(alloc, src, dest); |
| 218 | } |
| 219 | static void move(Alloc *alloc, slot_type *first, slot_type *last, |
| 220 | slot_type *result) { |
| 221 | slot_policy::move(alloc, first, last, result); |
| 222 | } |
| 223 | }; |
| 224 | |
| 225 | // A parameters structure for holding the type parameters for a btree_map. |
| 226 | // Compare and Alloc should be nothrow copy-constructible. |
| 227 | template <typename Key, typename Data, typename Compare, typename Alloc, |
| 228 | int TargetNodeSize, bool Multi> |
| 229 | struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, |
| 230 | map_slot_policy<Key, Data>> { |
| 231 | using super_type = typename map_params::common_params; |
| 232 | using mapped_type = Data; |
| 233 | // This type allows us to move keys when it is safe to do so. It is safe |
| 234 | // for maps in which value_type and mutable_value_type are layout compatible. |
| 235 | using slot_policy = typename super_type::slot_policy; |
| 236 | using slot_type = typename super_type::slot_type; |
| 237 | using value_type = typename super_type::value_type; |
| 238 | using init_type = typename super_type::init_type; |
| 239 | |
| 240 | using key_compare = typename super_type::key_compare; |
| 241 | // Inherit from key_compare for empty base class optimization. |
| 242 | struct value_compare : private key_compare { |
| 243 | value_compare() = default; |
| 244 | explicit value_compare(const key_compare &cmp) : key_compare(cmp) {} |
| 245 | |
| 246 | template <typename T, typename U> |
| 247 | auto operator()(const T &left, const U &right) const |
| 248 | -> decltype(std::declval<key_compare>()(left.first, right.first)) { |
| 249 | return key_compare::operator()(left.first, right.first); |
| 250 | } |
| 251 | }; |
| 252 | using is_map_container = std::true_type; |
| 253 | |
| 254 | static const Key &key(const value_type &x) { return x.first; } |
| 255 | static const Key &key(const init_type &x) { return x.first; } |
| 256 | static const Key &key(const slot_type *x) { return slot_policy::key(x); } |
| 257 | static mapped_type &value(value_type *value) { return value->second; } |
| 258 | }; |
| 259 | |
| 260 | // This type implements the necessary functions from the |
| 261 | // absl::container_internal::slot_type interface. |
| 262 | template <typename Key> |
| 263 | struct set_slot_policy { |
| 264 | using slot_type = Key; |
| 265 | using value_type = Key; |
| 266 | using mutable_value_type = Key; |
| 267 | |
| 268 | static value_type &element(slot_type *slot) { return *slot; } |
| 269 | static const value_type &element(const slot_type *slot) { return *slot; } |
| 270 | |
| 271 | template <typename Alloc, class... Args> |
| 272 | static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { |
| 273 | absl::allocator_traits<Alloc>::construct(*alloc, slot, |
| 274 | std::forward<Args>(args)...); |
| 275 | } |
| 276 | |
| 277 | template <typename Alloc> |
| 278 | static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { |
| 279 | absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other)); |
| 280 | } |
| 281 | |
| 282 | template <typename Alloc> |
| 283 | static void destroy(Alloc *alloc, slot_type *slot) { |
| 284 | absl::allocator_traits<Alloc>::destroy(*alloc, slot); |
| 285 | } |
| 286 | |
| 287 | template <typename Alloc> |
| 288 | static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) { |
| 289 | using std::swap; |
| 290 | swap(*a, *b); |
| 291 | } |
| 292 | |
| 293 | template <typename Alloc> |
| 294 | static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) { |
| 295 | *dest = std::move(*src); |
| 296 | } |
| 297 | |
| 298 | template <typename Alloc> |
| 299 | static void move(Alloc *alloc, slot_type *first, slot_type *last, |
| 300 | slot_type *result) { |
| 301 | for (slot_type *src = first, *dest = result; src != last; ++src, ++dest) |
| 302 | move(alloc, src, dest); |
| 303 | } |
| 304 | }; |
| 305 | |
| 306 | // A parameters structure for holding the type parameters for a btree_set. |
| 307 | // Compare and Alloc should be nothrow copy-constructible. |
| 308 | template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, |
| 309 | bool Multi> |
| 310 | struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, |
| 311 | set_slot_policy<Key>> { |
| 312 | using value_type = Key; |
| 313 | using slot_type = typename set_params::common_params::slot_type; |
| 314 | using value_compare = typename set_params::common_params::key_compare; |
| 315 | using is_map_container = std::false_type; |
| 316 | |
| 317 | static const Key &key(const value_type &x) { return x; } |
| 318 | static const Key &key(const slot_type *x) { return *x; } |
| 319 | }; |
| 320 | |
| 321 | // An adapter class that converts a lower-bound compare into an upper-bound |
| 322 | // compare. Note: there is no need to make a version of this adapter specialized |
| 323 | // for key-compare-to functors because the upper-bound (the first value greater |
| 324 | // than the input) is never an exact match. |
| 325 | template <typename Compare> |
| 326 | struct upper_bound_adapter { |
| 327 | explicit upper_bound_adapter(const Compare &c) : comp(c) {} |
| 328 | template <typename K, typename LK> |
| 329 | bool operator()(const K &a, const LK &b) const { |
| 330 | // Returns true when a is not greater than b. |
| 331 | return !compare_internal::compare_result_as_less_than(comp(b, a)); |
| 332 | } |
| 333 | |
| 334 | private: |
| 335 | Compare comp; |
| 336 | }; |
| 337 | |
| 338 | enum class MatchKind : uint8_t { kEq, kNe }; |
| 339 | |
| 340 | template <typename V, bool IsCompareTo> |
| 341 | struct SearchResult { |
| 342 | V value; |
| 343 | MatchKind match; |
| 344 | |
| 345 | static constexpr bool HasMatch() { return true; } |
| 346 | bool IsEq() const { return match == MatchKind::kEq; } |
| 347 | }; |
| 348 | |
| 349 | // When we don't use CompareTo, `match` is not present. |
| 350 | // This ensures that callers can't use it accidentally when it provides no |
| 351 | // useful information. |
| 352 | template <typename V> |
| 353 | struct SearchResult<V, false> { |
| 354 | V value; |
| 355 | |
| 356 | static constexpr bool HasMatch() { return false; } |
| 357 | static constexpr bool IsEq() { return false; } |
| 358 | }; |
| 359 | |
| 360 | // A node in the btree holding. The same node type is used for both internal |
| 361 | // and leaf nodes in the btree, though the nodes are allocated in such a way |
| 362 | // that the children array is only valid in internal nodes. |
| 363 | template <typename Params> |
| 364 | class btree_node { |
| 365 | using is_key_compare_to = typename Params::is_key_compare_to; |
| 366 | using is_multi_container = typename Params::is_multi_container; |
| 367 | using field_type = typename Params::node_count_type; |
| 368 | using allocator_type = typename Params::allocator_type; |
| 369 | using slot_type = typename Params::slot_type; |
| 370 | |
| 371 | public: |
| 372 | using params_type = Params; |
| 373 | using key_type = typename Params::key_type; |
| 374 | using value_type = typename Params::value_type; |
| 375 | using pointer = typename Params::pointer; |
| 376 | using const_pointer = typename Params::const_pointer; |
| 377 | using reference = typename Params::reference; |
| 378 | using const_reference = typename Params::const_reference; |
| 379 | using key_compare = typename Params::key_compare; |
| 380 | using size_type = typename Params::size_type; |
| 381 | using difference_type = typename Params::difference_type; |
| 382 | |
| 383 | // Btree decides whether to use linear node search as follows: |
| 384 | // - If the key is arithmetic and the comparator is std::less or |
| 385 | // std::greater, choose linear. |
| 386 | // - Otherwise, choose binary. |
| 387 | // TODO(ezb): Might make sense to add condition(s) based on node-size. |
| 388 | using use_linear_search = std::integral_constant< |
| 389 | bool, |
| 390 | std::is_arithmetic<key_type>::value && |
| 391 | (std::is_same<std::less<key_type>, key_compare>::value || |
| 392 | std::is_same<std::greater<key_type>, key_compare>::value)>; |
| 393 | |
| 394 | // This class is organized by gtl::Layout as if it had the following |
| 395 | // structure: |
| 396 | // // A pointer to the node's parent. |
| 397 | // btree_node *parent; |
| 398 | // |
| 399 | // // The position of the node in the node's parent. |
| 400 | // field_type position; |
| 401 | // // The index of the first populated value in `values`. |
| 402 | // // TODO(ezb): right now, `start` is always 0. Update insertion/merge |
| 403 | // // logic to allow for floating storage within nodes. |
| 404 | // field_type start; |
| 405 | // // The count of the number of populated values in the node. |
| 406 | // field_type count; |
| 407 | // // The maximum number of values the node can hold. This is an integer in |
| 408 | // // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf |
| 409 | // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal |
| 410 | // // nodes (even though there are still kNodeValues values in the node). |
| 411 | // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) |
| 412 | // // to free extra bits for is_root, etc. |
| 413 | // field_type max_count; |
| 414 | // |
| 415 | // // The array of values. The capacity is `max_count` for leaf nodes and |
| 416 | // // kNodeValues for internal nodes. Only the values in |
| 417 | // // [start, start + count) have been initialized and are valid. |
| 418 | // slot_type values[max_count]; |
| 419 | // |
| 420 | // // The array of child pointers. The keys in children[i] are all less |
| 421 | // // than key(i). The keys in children[i + 1] are all greater than key(i). |
| 422 | // // There are 0 children for leaf nodes and kNodeValues + 1 children for |
| 423 | // // internal nodes. |
| 424 | // btree_node *children[kNodeValues + 1]; |
| 425 | // |
| 426 | // This class is only constructed by EmptyNodeType. Normally, pointers to the |
| 427 | // layout above are allocated, cast to btree_node*, and de-allocated within |
| 428 | // the btree implementation. |
| 429 | ~btree_node() = default; |
| 430 | btree_node(btree_node const &) = delete; |
| 431 | btree_node &operator=(btree_node const &) = delete; |
| 432 | |
| 433 | // Public for EmptyNodeType. |
| 434 | constexpr static size_type Alignment() { |
| 435 | static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), |
| 436 | "Alignment of all nodes must be equal."); |
| 437 | return InternalLayout().Alignment(); |
| 438 | } |
| 439 | |
| 440 | protected: |
| 441 | btree_node() = default; |
| 442 | |
| 443 | private: |
| 444 | using layout_type = absl::container_internal::Layout<btree_node *, field_type, |
| 445 | slot_type, btree_node *>; |
| 446 | constexpr static size_type SizeWithNValues(size_type n) { |
| 447 | return layout_type(/*parent*/ 1, |
| 448 | /*position, start, count, max_count*/ 4, |
| 449 | /*values*/ n, |
| 450 | /*children*/ 0) |
| 451 | .AllocSize(); |
| 452 | } |
| 453 | // A lower bound for the overhead of fields other than values in a leaf node. |
| 454 | constexpr static size_type MinimumOverhead() { |
| 455 | return SizeWithNValues(1) - sizeof(value_type); |
| 456 | } |
| 457 | |
| 458 | // Compute how many values we can fit onto a leaf node taking into account |
| 459 | // padding. |
| 460 | constexpr static size_type NodeTargetValues(const int begin, const int end) { |
| 461 | return begin == end ? begin |
| 462 | : SizeWithNValues((begin + end) / 2 + 1) > |
| 463 | params_type::kTargetNodeSize |
| 464 | ? NodeTargetValues(begin, (begin + end) / 2) |
| 465 | : NodeTargetValues((begin + end) / 2 + 1, end); |
| 466 | } |
| 467 | |
| 468 | enum { |
| 469 | kTargetNodeSize = params_type::kTargetNodeSize, |
| 470 | kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize), |
| 471 | |
| 472 | // We need a minimum of 3 values per internal node in order to perform |
| 473 | // splitting (1 value for the two nodes involved in the split and 1 value |
| 474 | // propagated to the parent as the delimiter for the split). |
| 475 | kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3, |
| 476 | |
| 477 | // The node is internal (i.e. is not a leaf node) if and only if `max_count` |
| 478 | // has this value. |
| 479 | kInternalNodeMaxCount = 0, |
| 480 | }; |
| 481 | |
| 482 | // Leaves can have less than kNodeValues values. |
| 483 | constexpr static layout_type LeafLayout(const int max_values = kNodeValues) { |
| 484 | return layout_type(/*parent*/ 1, |
| 485 | /*position, start, count, max_count*/ 4, |
| 486 | /*values*/ max_values, |
| 487 | /*children*/ 0); |
| 488 | } |
| 489 | constexpr static layout_type InternalLayout() { |
| 490 | return layout_type(/*parent*/ 1, |
| 491 | /*position, start, count, max_count*/ 4, |
| 492 | /*values*/ kNodeValues, |
| 493 | /*children*/ kNodeValues + 1); |
| 494 | } |
| 495 | constexpr static size_type LeafSize(const int max_values = kNodeValues) { |
| 496 | return LeafLayout(max_values).AllocSize(); |
| 497 | } |
| 498 | constexpr static size_type InternalSize() { |
| 499 | return InternalLayout().AllocSize(); |
| 500 | } |
| 501 | |
| 502 | // N is the index of the type in the Layout definition. |
| 503 | // ElementType<N> is the Nth type in the Layout definition. |
| 504 | template <size_type N> |
| 505 | inline typename layout_type::template ElementType<N> *GetField() { |
| 506 | // We assert that we don't read from values that aren't there. |
| 507 | assert(N < 3 || !leaf()); |
| 508 | return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); |
| 509 | } |
| 510 | template <size_type N> |
| 511 | inline const typename layout_type::template ElementType<N> *GetField() const { |
| 512 | assert(N < 3 || !leaf()); |
| 513 | return InternalLayout().template Pointer<N>( |
| 514 | reinterpret_cast<const char *>(this)); |
| 515 | } |
| 516 | void set_parent(btree_node *p) { *GetField<0>() = p; } |
| 517 | field_type &mutable_count() { return GetField<1>()[2]; } |
| 518 | slot_type *slot(int i) { return &GetField<2>()[i]; } |
| 519 | const slot_type *slot(int i) const { return &GetField<2>()[i]; } |
| 520 | void set_position(field_type v) { GetField<1>()[0] = v; } |
| 521 | void set_start(field_type v) { GetField<1>()[1] = v; } |
| 522 | void set_count(field_type v) { GetField<1>()[2] = v; } |
| 523 | // This method is only called by the node init methods. |
| 524 | void set_max_count(field_type v) { GetField<1>()[3] = v; } |
| 525 | |
| 526 | public: |
| 527 | // Whether this is a leaf node or not. This value doesn't change after the |
| 528 | // node is created. |
| 529 | bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; } |
| 530 | |
| 531 | // Getter for the position of this node in its parent. |
| 532 | field_type position() const { return GetField<1>()[0]; } |
| 533 | |
| 534 | // Getter for the offset of the first value in the `values` array. |
| 535 | field_type start() const { return GetField<1>()[1]; } |
| 536 | |
| 537 | // Getters for the number of values stored in this node. |
| 538 | field_type count() const { return GetField<1>()[2]; } |
| 539 | field_type max_count() const { |
| 540 | // Internal nodes have max_count==kInternalNodeMaxCount. |
| 541 | // Leaf nodes have max_count in [1, kNodeValues]. |
| 542 | const field_type max_count = GetField<1>()[3]; |
| 543 | return max_count == field_type{kInternalNodeMaxCount} |
| 544 | ? field_type{kNodeValues} |
| 545 | : max_count; |
| 546 | } |
| 547 | |
| 548 | // Getter for the parent of this node. |
| 549 | btree_node *parent() const { return *GetField<0>(); } |
| 550 | // Getter for whether the node is the root of the tree. The parent of the |
| 551 | // root of the tree is the leftmost node in the tree which is guaranteed to |
| 552 | // be a leaf. |
| 553 | bool is_root() const { return parent()->leaf(); } |
| 554 | void make_root() { |
| 555 | assert(parent()->is_root()); |
| 556 | set_parent(parent()->parent()); |
| 557 | } |
| 558 | |
| 559 | // Getters for the key/value at position i in the node. |
| 560 | const key_type &key(int i) const { return params_type::key(slot(i)); } |
| 561 | reference value(int i) { return params_type::element(slot(i)); } |
| 562 | const_reference value(int i) const { return params_type::element(slot(i)); } |
| 563 | |
| 564 | // Getters/setter for the child at position i in the node. |
| 565 | btree_node *child(int i) const { return GetField<3>()[i]; } |
| 566 | btree_node *&mutable_child(int i) { return GetField<3>()[i]; } |
| 567 | void clear_child(int i) { |
| 568 | absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); |
| 569 | } |
| 570 | void set_child(int i, btree_node *c) { |
| 571 | absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); |
| 572 | mutable_child(i) = c; |
| 573 | c->set_position(i); |
| 574 | } |
| 575 | void init_child(int i, btree_node *c) { |
| 576 | set_child(i, c); |
| 577 | c->set_parent(this); |
| 578 | } |
| 579 | |
| 580 | // Returns the position of the first value whose key is not less than k. |
| 581 | template <typename K> |
| 582 | SearchResult<int, is_key_compare_to::value> lower_bound( |
| 583 | const K &k, const key_compare &comp) const { |
| 584 | return use_linear_search::value ? linear_search(k, comp) |
| 585 | : binary_search(k, comp); |
| 586 | } |
| 587 | // Returns the position of the first value whose key is greater than k. |
| 588 | template <typename K> |
| 589 | int upper_bound(const K &k, const key_compare &comp) const { |
| 590 | auto upper_compare = upper_bound_adapter<key_compare>(comp); |
| 591 | return use_linear_search::value ? linear_search(k, upper_compare).value |
| 592 | : binary_search(k, upper_compare).value; |
| 593 | } |
| 594 | |
| 595 | template <typename K, typename Compare> |
| 596 | SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> |
| 597 | linear_search(const K &k, const Compare &comp) const { |
| 598 | return linear_search_impl(k, 0, count(), comp, |
| 599 | btree_is_key_compare_to<Compare, key_type>()); |
| 600 | } |
| 601 | |
| 602 | template <typename K, typename Compare> |
| 603 | SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> |
| 604 | binary_search(const K &k, const Compare &comp) const { |
| 605 | return binary_search_impl(k, 0, count(), comp, |
| 606 | btree_is_key_compare_to<Compare, key_type>()); |
| 607 | } |
| 608 | |
| 609 | // Returns the position of the first value whose key is not less than k using |
| 610 | // linear search performed using plain compare. |
| 611 | template <typename K, typename Compare> |
| 612 | SearchResult<int, false> linear_search_impl( |
| 613 | const K &k, int s, const int e, const Compare &comp, |
| 614 | std::false_type /* IsCompareTo */) const { |
| 615 | while (s < e) { |
| 616 | if (!comp(key(s), k)) { |
| 617 | break; |
| 618 | } |
| 619 | ++s; |
| 620 | } |
| 621 | return {s}; |
| 622 | } |
| 623 | |
| 624 | // Returns the position of the first value whose key is not less than k using |
| 625 | // linear search performed using compare-to. |
| 626 | template <typename K, typename Compare> |
| 627 | SearchResult<int, true> linear_search_impl( |
| 628 | const K &k, int s, const int e, const Compare &comp, |
| 629 | std::true_type /* IsCompareTo */) const { |
| 630 | while (s < e) { |
| 631 | const absl::weak_ordering c = comp(key(s), k); |
| 632 | if (c == 0) { |
| 633 | return {s, MatchKind::kEq}; |
| 634 | } else if (c > 0) { |
| 635 | break; |
| 636 | } |
| 637 | ++s; |
| 638 | } |
| 639 | return {s, MatchKind::kNe}; |
| 640 | } |
| 641 | |
| 642 | // Returns the position of the first value whose key is not less than k using |
| 643 | // binary search performed using plain compare. |
| 644 | template <typename K, typename Compare> |
| 645 | SearchResult<int, false> binary_search_impl( |
| 646 | const K &k, int s, int e, const Compare &comp, |
| 647 | std::false_type /* IsCompareTo */) const { |
| 648 | while (s != e) { |
| 649 | const int mid = (s + e) >> 1; |
| 650 | if (comp(key(mid), k)) { |
| 651 | s = mid + 1; |
| 652 | } else { |
| 653 | e = mid; |
| 654 | } |
| 655 | } |
| 656 | return {s}; |
| 657 | } |
| 658 | |
| 659 | // Returns the position of the first value whose key is not less than k using |
| 660 | // binary search performed using compare-to. |
| 661 | template <typename K, typename CompareTo> |
| 662 | SearchResult<int, true> binary_search_impl( |
| 663 | const K &k, int s, int e, const CompareTo &comp, |
| 664 | std::true_type /* IsCompareTo */) const { |
| 665 | if (is_multi_container::value) { |
| 666 | MatchKind exact_match = MatchKind::kNe; |
| 667 | while (s != e) { |
| 668 | const int mid = (s + e) >> 1; |
| 669 | const absl::weak_ordering c = comp(key(mid), k); |
| 670 | if (c < 0) { |
| 671 | s = mid + 1; |
| 672 | } else { |
| 673 | e = mid; |
| 674 | if (c == 0) { |
| 675 | // Need to return the first value whose key is not less than k, |
| 676 | // which requires continuing the binary search if this is a |
| 677 | // multi-container. |
| 678 | exact_match = MatchKind::kEq; |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | return {s, exact_match}; |
| 683 | } else { // Not a multi-container. |
| 684 | while (s != e) { |
| 685 | const int mid = (s + e) >> 1; |
| 686 | const absl::weak_ordering c = comp(key(mid), k); |
| 687 | if (c < 0) { |
| 688 | s = mid + 1; |
| 689 | } else if (c > 0) { |
| 690 | e = mid; |
| 691 | } else { |
| 692 | return {mid, MatchKind::kEq}; |
| 693 | } |
| 694 | } |
| 695 | return {s, MatchKind::kNe}; |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | // Emplaces a value at position i, shifting all existing values and |
| 700 | // children at positions >= i to the right by 1. |
| 701 | template <typename... Args> |
| 702 | void emplace_value(size_type i, allocator_type *alloc, Args &&... args); |
| 703 | |
| 704 | // Removes the value at position i, shifting all existing values and children |
| 705 | // at positions > i to the left by 1. |
| 706 | void remove_value(int i, allocator_type *alloc); |
| 707 | |
| 708 | // Removes the values at positions [i, i + to_erase), shifting all values |
| 709 | // after that range to the left by to_erase. Does not change children at all. |
| 710 | void remove_values_ignore_children(int i, int to_erase, |
| 711 | allocator_type *alloc); |
| 712 | |
| 713 | // Rebalances a node with its right sibling. |
| 714 | void rebalance_right_to_left(int to_move, btree_node *right, |
| 715 | allocator_type *alloc); |
| 716 | void rebalance_left_to_right(int to_move, btree_node *right, |
| 717 | allocator_type *alloc); |
| 718 | |
| 719 | // Splits a node, moving a portion of the node's values to its right sibling. |
| 720 | void split(int insert_position, btree_node *dest, allocator_type *alloc); |
| 721 | |
| 722 | // Merges a node with its right sibling, moving all of the values and the |
| 723 | // delimiting key in the parent node onto itself. |
| 724 | void merge(btree_node *sibling, allocator_type *alloc); |
| 725 | |
| 726 | // Swap the contents of "this" and "src". |
| 727 | void swap(btree_node *src, allocator_type *alloc); |
| 728 | |
| 729 | // Node allocation/deletion routines. |
| 730 | static btree_node *init_leaf(btree_node *n, btree_node *parent, |
| 731 | int max_count) { |
| 732 | n->set_parent(parent); |
| 733 | n->set_position(0); |
| 734 | n->set_start(0); |
| 735 | n->set_count(0); |
| 736 | n->set_max_count(max_count); |
| 737 | absl::container_internal::SanitizerPoisonMemoryRegion( |
| 738 | n->slot(0), max_count * sizeof(slot_type)); |
| 739 | return n; |
| 740 | } |
| 741 | static btree_node *init_internal(btree_node *n, btree_node *parent) { |
| 742 | init_leaf(n, parent, kNodeValues); |
| 743 | // Set `max_count` to a sentinel value to indicate that this node is |
| 744 | // internal. |
| 745 | n->set_max_count(kInternalNodeMaxCount); |
| 746 | absl::container_internal::SanitizerPoisonMemoryRegion( |
| 747 | &n->mutable_child(0), (kNodeValues + 1) * sizeof(btree_node *)); |
| 748 | return n; |
| 749 | } |
| 750 | void destroy(allocator_type *alloc) { |
| 751 | for (int i = 0; i < count(); ++i) { |
| 752 | value_destroy(i, alloc); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | public: |
| 757 | // Exposed only for tests. |
| 758 | static bool testonly_uses_linear_node_search() { |
| 759 | return use_linear_search::value; |
| 760 | } |
| 761 | |
| 762 | private: |
| 763 | template <typename... Args> |
| 764 | void value_init(const size_type i, allocator_type *alloc, Args &&... args) { |
| 765 | absl::container_internal::SanitizerUnpoisonObject(slot(i)); |
| 766 | params_type::construct(alloc, slot(i), std::forward<Args>(args)...); |
| 767 | } |
| 768 | void value_destroy(const size_type i, allocator_type *alloc) { |
| 769 | params_type::destroy(alloc, slot(i)); |
| 770 | absl::container_internal::SanitizerPoisonObject(slot(i)); |
| 771 | } |
| 772 | |
| 773 | // Move n values starting at value i in this node into the values starting at |
| 774 | // value j in node x. |
| 775 | void uninitialized_move_n(const size_type n, const size_type i, |
| 776 | const size_type j, btree_node *x, |
| 777 | allocator_type *alloc) { |
| 778 | absl::container_internal::SanitizerUnpoisonMemoryRegion( |
| 779 | x->slot(j), n * sizeof(slot_type)); |
| 780 | for (slot_type *src = slot(i), *end = src + n, *dest = x->slot(j); |
| 781 | src != end; ++src, ++dest) { |
| 782 | params_type::construct(alloc, dest, src); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | // Destroys a range of n values, starting at index i. |
| 787 | void value_destroy_n(const size_type i, const size_type n, |
| 788 | allocator_type *alloc) { |
| 789 | for (int j = 0; j < n; ++j) { |
| 790 | value_destroy(i + j, alloc); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | template <typename P> |
| 795 | friend class btree; |
| 796 | template <typename N, typename R, typename P> |
| 797 | friend struct btree_iterator; |
| 798 | friend class BtreeNodePeer; |
| 799 | }; |
| 800 | |
| 801 | template <typename Node, typename Reference, typename Pointer> |
| 802 | struct btree_iterator { |
| 803 | private: |
| 804 | using key_type = typename Node::key_type; |
| 805 | using size_type = typename Node::size_type; |
| 806 | using params_type = typename Node::params_type; |
| 807 | |
| 808 | using node_type = Node; |
| 809 | using normal_node = typename std::remove_const<Node>::type; |
| 810 | using const_node = const Node; |
| 811 | using normal_pointer = typename params_type::pointer; |
| 812 | using normal_reference = typename params_type::reference; |
| 813 | using const_pointer = typename params_type::const_pointer; |
| 814 | using const_reference = typename params_type::const_reference; |
| 815 | using slot_type = typename params_type::slot_type; |
| 816 | |
| 817 | using iterator = |
| 818 | btree_iterator<normal_node, normal_reference, normal_pointer>; |
| 819 | using const_iterator = |
| 820 | btree_iterator<const_node, const_reference, const_pointer>; |
| 821 | |
| 822 | public: |
| 823 | // These aliases are public for std::iterator_traits. |
| 824 | using difference_type = typename Node::difference_type; |
| 825 | using value_type = typename params_type::value_type; |
| 826 | using pointer = Pointer; |
| 827 | using reference = Reference; |
| 828 | using iterator_category = std::bidirectional_iterator_tag; |
| 829 | |
| 830 | btree_iterator() : node(nullptr), position(-1) {} |
| 831 | btree_iterator(Node *n, int p) : node(n), position(p) {} |
| 832 | |
| 833 | // NOTE: this SFINAE allows for implicit conversions from iterator to |
| 834 | // const_iterator, but it specifically avoids defining copy constructors so |
| 835 | // that btree_iterator can be trivially copyable. This is for performance and |
| 836 | // binary size reasons. |
| 837 | template <typename N, typename R, typename P, |
| 838 | absl::enable_if_t< |
| 839 | std::is_same<btree_iterator<N, R, P>, iterator>::value && |
| 840 | std::is_same<btree_iterator, const_iterator>::value, |
| 841 | int> = 0> |
| 842 | btree_iterator(const btree_iterator<N, R, P> &x) // NOLINT |
| 843 | : node(x.node), position(x.position) {} |
| 844 | |
| 845 | private: |
| 846 | // This SFINAE allows explicit conversions from const_iterator to |
| 847 | // iterator, but also avoids defining a copy constructor. |
| 848 | // NOTE: the const_cast is safe because this constructor is only called by |
| 849 | // non-const methods and the container owns the nodes. |
| 850 | template <typename N, typename R, typename P, |
| 851 | absl::enable_if_t< |
| 852 | std::is_same<btree_iterator<N, R, P>, const_iterator>::value && |
| 853 | std::is_same<btree_iterator, iterator>::value, |
| 854 | int> = 0> |
| 855 | explicit btree_iterator(const btree_iterator<N, R, P> &x) |
| 856 | : node(const_cast<node_type *>(x.node)), position(x.position) {} |
| 857 | |
| 858 | // Increment/decrement the iterator. |
| 859 | void increment() { |
| 860 | if (node->leaf() && ++position < node->count()) { |
| 861 | return; |
| 862 | } |
| 863 | increment_slow(); |
| 864 | } |
| 865 | void increment_slow(); |
| 866 | |
| 867 | void decrement() { |
| 868 | if (node->leaf() && --position >= 0) { |
| 869 | return; |
| 870 | } |
| 871 | decrement_slow(); |
| 872 | } |
| 873 | void decrement_slow(); |
| 874 | |
| 875 | public: |
| 876 | bool operator==(const const_iterator &x) const { |
| 877 | return node == x.node && position == x.position; |
| 878 | } |
| 879 | bool operator!=(const const_iterator &x) const { |
| 880 | return node != x.node || position != x.position; |
| 881 | } |
| 882 | |
| 883 | // Accessors for the key/value the iterator is pointing at. |
| 884 | reference operator*() const { |
| 885 | return node->value(position); |
| 886 | } |
| 887 | pointer operator->() const { |
| 888 | return &node->value(position); |
| 889 | } |
| 890 | |
| 891 | btree_iterator& operator++() { |
| 892 | increment(); |
| 893 | return *this; |
| 894 | } |
| 895 | btree_iterator& operator--() { |
| 896 | decrement(); |
| 897 | return *this; |
| 898 | } |
| 899 | btree_iterator operator++(int) { |
| 900 | btree_iterator tmp = *this; |
| 901 | ++*this; |
| 902 | return tmp; |
| 903 | } |
| 904 | btree_iterator operator--(int) { |
| 905 | btree_iterator tmp = *this; |
| 906 | --*this; |
| 907 | return tmp; |
| 908 | } |
| 909 | |
| 910 | private: |
| 911 | template <typename Params> |
| 912 | friend class btree; |
| 913 | template <typename Tree> |
| 914 | friend class btree_container; |
| 915 | template <typename Tree> |
| 916 | friend class btree_set_container; |
| 917 | template <typename Tree> |
| 918 | friend class btree_map_container; |
| 919 | template <typename Tree> |
| 920 | friend class btree_multiset_container; |
| 921 | template <typename N, typename R, typename P> |
| 922 | friend struct btree_iterator; |
| 923 | template <typename TreeType, typename CheckerType> |
| 924 | friend class base_checker; |
| 925 | |
| 926 | const key_type &key() const { return node->key(position); } |
| 927 | slot_type *slot() { return node->slot(position); } |
| 928 | |
| 929 | // The node in the tree the iterator is pointing at. |
| 930 | Node *node; |
| 931 | // The position within the node of the tree the iterator is pointing at. |
| 932 | // TODO(ezb): make this a field_type |
| 933 | int position; |
| 934 | }; |
| 935 | |
| 936 | template <typename Params> |
| 937 | class btree { |
| 938 | using node_type = btree_node<Params>; |
| 939 | using is_key_compare_to = typename Params::is_key_compare_to; |
| 940 | |
| 941 | // We use a static empty node for the root/leftmost/rightmost of empty btrees |
| 942 | // in order to avoid branching in begin()/end(). |
| 943 | struct alignas(node_type::Alignment()) EmptyNodeType : node_type { |
| 944 | using field_type = typename node_type::field_type; |
| 945 | node_type *parent; |
| 946 | field_type position = 0; |
| 947 | field_type start = 0; |
| 948 | field_type count = 0; |
| 949 | // max_count must be != kInternalNodeMaxCount (so that this node is regarded |
| 950 | // as a leaf node). max_count() is never called when the tree is empty. |
| 951 | field_type max_count = node_type::kInternalNodeMaxCount + 1; |
| 952 | |
| 953 | #ifdef _MSC_VER |
| 954 | // MSVC has constexpr code generations bugs here. |
| 955 | EmptyNodeType() : parent(this) {} |
| 956 | #else |
| 957 | constexpr EmptyNodeType(node_type *p) : parent(p) {} |
| 958 | #endif |
| 959 | }; |
| 960 | |
| 961 | static node_type *EmptyNode() { |
| 962 | #ifdef _MSC_VER |
| 963 | static EmptyNodeType* empty_node = new EmptyNodeType; |
| 964 | // This assert fails on some other construction methods. |
| 965 | assert(empty_node->parent == empty_node); |
| 966 | return empty_node; |
| 967 | #else |
| 968 | static constexpr EmptyNodeType empty_node( |
| 969 | const_cast<EmptyNodeType *>(&empty_node)); |
| 970 | return const_cast<EmptyNodeType *>(&empty_node); |
| 971 | #endif |
| 972 | } |
| 973 | |
| 974 | enum { |
| 975 | kNodeValues = node_type::kNodeValues, |
| 976 | kMinNodeValues = kNodeValues / 2, |
| 977 | }; |
| 978 | |
| 979 | struct node_stats { |
| 980 | using size_type = typename Params::size_type; |
| 981 | |
| 982 | node_stats(size_type l, size_type i) |
| 983 | : leaf_nodes(l), |
| 984 | internal_nodes(i) { |
| 985 | } |
| 986 | |
| 987 | node_stats& operator+=(const node_stats &x) { |
| 988 | leaf_nodes += x.leaf_nodes; |
| 989 | internal_nodes += x.internal_nodes; |
| 990 | return *this; |
| 991 | } |
| 992 | |
| 993 | size_type leaf_nodes; |
| 994 | size_type internal_nodes; |
| 995 | }; |
| 996 | |
| 997 | public: |
| 998 | using key_type = typename Params::key_type; |
| 999 | using value_type = typename Params::value_type; |
| 1000 | using size_type = typename Params::size_type; |
| 1001 | using difference_type = typename Params::difference_type; |
| 1002 | using key_compare = typename Params::key_compare; |
| 1003 | using value_compare = typename Params::value_compare; |
| 1004 | using allocator_type = typename Params::allocator_type; |
| 1005 | using reference = typename Params::reference; |
| 1006 | using const_reference = typename Params::const_reference; |
| 1007 | using pointer = typename Params::pointer; |
| 1008 | using const_pointer = typename Params::const_pointer; |
| 1009 | using iterator = btree_iterator<node_type, reference, pointer>; |
| 1010 | using const_iterator = typename iterator::const_iterator; |
| 1011 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 1012 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 1013 | using node_handle_type = node_handle<Params, Params, allocator_type>; |
| 1014 | |
| 1015 | // Internal types made public for use by btree_container types. |
| 1016 | using params_type = Params; |
| 1017 | using slot_type = typename Params::slot_type; |
| 1018 | |
| 1019 | private: |
| 1020 | // For use in copy_or_move_values_in_order. |
| 1021 | const value_type &maybe_move_from_iterator(const_iterator x) { return *x; } |
| 1022 | value_type &&maybe_move_from_iterator(iterator x) { return std::move(*x); } |
| 1023 | |
| 1024 | // Copies or moves (depending on the template parameter) the values in |
| 1025 | // x into this btree in their order in x. This btree must be empty before this |
| 1026 | // method is called. This method is used in copy construction, copy |
| 1027 | // assignment, and move assignment. |
| 1028 | template <typename Btree> |
| 1029 | void copy_or_move_values_in_order(Btree *x); |
| 1030 | |
| 1031 | // Validates that various assumptions/requirements are true at compile time. |
| 1032 | constexpr static bool static_assert_validation(); |
| 1033 | |
| 1034 | public: |
| 1035 | btree(const key_compare &comp, const allocator_type &alloc); |
| 1036 | |
| 1037 | btree(const btree &x); |
| 1038 | btree(btree &&x) noexcept |
| 1039 | : root_(std::move(x.root_)), |
| 1040 | rightmost_(absl::exchange(x.rightmost_, EmptyNode())), |
| 1041 | size_(absl::exchange(x.size_, 0)) { |
| 1042 | x.mutable_root() = EmptyNode(); |
| 1043 | } |
| 1044 | |
| 1045 | ~btree() { |
| 1046 | // Put static_asserts in destructor to avoid triggering them before the type |
| 1047 | // is complete. |
| 1048 | static_assert(static_assert_validation(), "This call must be elided."); |
| 1049 | clear(); |
| 1050 | } |
| 1051 | |
| 1052 | // Assign the contents of x to *this. |
| 1053 | btree &operator=(const btree &x); |
| 1054 | btree &operator=(btree &&x) noexcept; |
| 1055 | |
| 1056 | iterator begin() { |
| 1057 | return iterator(leftmost(), 0); |
| 1058 | } |
| 1059 | const_iterator begin() const { |
| 1060 | return const_iterator(leftmost(), 0); |
| 1061 | } |
| 1062 | iterator end() { return iterator(rightmost_, rightmost_->count()); } |
| 1063 | const_iterator end() const { |
| 1064 | return const_iterator(rightmost_, rightmost_->count()); |
| 1065 | } |
| 1066 | reverse_iterator rbegin() { |
| 1067 | return reverse_iterator(end()); |
| 1068 | } |
| 1069 | const_reverse_iterator rbegin() const { |
| 1070 | return const_reverse_iterator(end()); |
| 1071 | } |
| 1072 | reverse_iterator rend() { |
| 1073 | return reverse_iterator(begin()); |
| 1074 | } |
| 1075 | const_reverse_iterator rend() const { |
| 1076 | return const_reverse_iterator(begin()); |
| 1077 | } |
| 1078 | |
| 1079 | // Finds the first element whose key is not less than key. |
| 1080 | template <typename K> |
| 1081 | iterator lower_bound(const K &key) { |
| 1082 | return internal_end(internal_lower_bound(key)); |
| 1083 | } |
| 1084 | template <typename K> |
| 1085 | const_iterator lower_bound(const K &key) const { |
| 1086 | return internal_end(internal_lower_bound(key)); |
| 1087 | } |
| 1088 | |
| 1089 | // Finds the first element whose key is greater than key. |
| 1090 | template <typename K> |
| 1091 | iterator upper_bound(const K &key) { |
| 1092 | return internal_end(internal_upper_bound(key)); |
| 1093 | } |
| 1094 | template <typename K> |
| 1095 | const_iterator upper_bound(const K &key) const { |
| 1096 | return internal_end(internal_upper_bound(key)); |
| 1097 | } |
| 1098 | |
| 1099 | // Finds the range of values which compare equal to key. The first member of |
| 1100 | // the returned pair is equal to lower_bound(key). The second member pair of |
| 1101 | // the pair is equal to upper_bound(key). |
| 1102 | template <typename K> |
| 1103 | std::pair<iterator, iterator> equal_range(const K &key) { |
| 1104 | return {lower_bound(key), upper_bound(key)}; |
| 1105 | } |
| 1106 | template <typename K> |
| 1107 | std::pair<const_iterator, const_iterator> equal_range(const K &key) const { |
| 1108 | return {lower_bound(key), upper_bound(key)}; |
| 1109 | } |
| 1110 | |
| 1111 | // Inserts a value into the btree only if it does not already exist. The |
| 1112 | // boolean return value indicates whether insertion succeeded or failed. |
| 1113 | // Requirement: if `key` already exists in the btree, does not consume `args`. |
| 1114 | // Requirement: `key` is never referenced after consuming `args`. |
| 1115 | template <typename... Args> |
| 1116 | std::pair<iterator, bool> insert_unique(const key_type &key, Args &&... args); |
| 1117 | |
| 1118 | // Inserts with hint. Checks to see if the value should be placed immediately |
| 1119 | // before `position` in the tree. If so, then the insertion will take |
| 1120 | // amortized constant time. If not, the insertion will take amortized |
| 1121 | // logarithmic time as if a call to insert_unique() were made. |
| 1122 | // Requirement: if `key` already exists in the btree, does not consume `args`. |
| 1123 | // Requirement: `key` is never referenced after consuming `args`. |
| 1124 | template <typename... Args> |
| 1125 | std::pair<iterator, bool> insert_hint_unique(iterator position, |
| 1126 | const key_type &key, |
| 1127 | Args &&... args); |
| 1128 | |
| 1129 | // Insert a range of values into the btree. |
| 1130 | template <typename InputIterator> |
| 1131 | void insert_iterator_unique(InputIterator b, InputIterator e); |
| 1132 | |
| 1133 | // Inserts a value into the btree. |
| 1134 | template <typename ValueType> |
| 1135 | iterator insert_multi(const key_type &key, ValueType &&v); |
| 1136 | |
| 1137 | // Inserts a value into the btree. |
| 1138 | template <typename ValueType> |
| 1139 | iterator insert_multi(ValueType &&v) { |
| 1140 | return insert_multi(params_type::key(v), std::forward<ValueType>(v)); |
| 1141 | } |
| 1142 | |
| 1143 | // Insert with hint. Check to see if the value should be placed immediately |
| 1144 | // before position in the tree. If it does, then the insertion will take |
| 1145 | // amortized constant time. If not, the insertion will take amortized |
| 1146 | // logarithmic time as if a call to insert_multi(v) were made. |
| 1147 | template <typename ValueType> |
| 1148 | iterator insert_hint_multi(iterator position, ValueType &&v); |
| 1149 | |
| 1150 | // Insert a range of values into the btree. |
| 1151 | template <typename InputIterator> |
| 1152 | void insert_iterator_multi(InputIterator b, InputIterator e); |
| 1153 | |
| 1154 | // Erase the specified iterator from the btree. The iterator must be valid |
| 1155 | // (i.e. not equal to end()). Return an iterator pointing to the node after |
| 1156 | // the one that was erased (or end() if none exists). |
| 1157 | // Requirement: does not read the value at `*iter`. |
| 1158 | iterator erase(iterator iter); |
| 1159 | |
| 1160 | // Erases range. Returns the number of keys erased and an iterator pointing |
| 1161 | // to the element after the last erased element. |
| 1162 | std::pair<size_type, iterator> erase(iterator begin, iterator end); |
| 1163 | |
| 1164 | // Erases the specified key from the btree. Returns 1 if an element was |
| 1165 | // erased and 0 otherwise. |
| 1166 | template <typename K> |
| 1167 | size_type erase_unique(const K &key); |
| 1168 | |
| 1169 | // Erases all of the entries matching the specified key from the |
| 1170 | // btree. Returns the number of elements erased. |
| 1171 | template <typename K> |
| 1172 | size_type erase_multi(const K &key); |
| 1173 | |
| 1174 | // Finds the iterator corresponding to a key or returns end() if the key is |
| 1175 | // not present. |
| 1176 | template <typename K> |
| 1177 | iterator find(const K &key) { |
| 1178 | return internal_end(internal_find(key)); |
| 1179 | } |
| 1180 | template <typename K> |
| 1181 | const_iterator find(const K &key) const { |
| 1182 | return internal_end(internal_find(key)); |
| 1183 | } |
| 1184 | |
| 1185 | // Returns a count of the number of times the key appears in the btree. |
| 1186 | template <typename K> |
| 1187 | size_type count_unique(const K &key) const { |
| 1188 | const iterator begin = internal_find(key); |
| 1189 | if (begin.node == nullptr) { |
| 1190 | // The key doesn't exist in the tree. |
| 1191 | return 0; |
| 1192 | } |
| 1193 | return 1; |
| 1194 | } |
| 1195 | // Returns a count of the number of times the key appears in the btree. |
| 1196 | template <typename K> |
| 1197 | size_type count_multi(const K &key) const { |
| 1198 | const auto range = equal_range(key); |
| 1199 | return std::distance(range.first, range.second); |
| 1200 | } |
| 1201 | |
| 1202 | // Clear the btree, deleting all of the values it contains. |
| 1203 | void clear(); |
| 1204 | |
| 1205 | // Swap the contents of *this and x. |
| 1206 | void swap(btree &x); |
| 1207 | |
| 1208 | const key_compare &key_comp() const noexcept { |
| 1209 | return root_.template get<0>(); |
| 1210 | } |
| 1211 | template <typename K, typename LK> |
| 1212 | bool compare_keys(const K &x, const LK &y) const { |
| 1213 | return compare_internal::compare_result_as_less_than(key_comp()(x, y)); |
| 1214 | } |
| 1215 | |
| 1216 | value_compare value_comp() const { return value_compare(key_comp()); } |
| 1217 | |
| 1218 | // Verifies the structure of the btree. |
| 1219 | void verify() const; |
| 1220 | |
| 1221 | // Size routines. |
| 1222 | size_type size() const { return size_; } |
| 1223 | size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } |
| 1224 | bool empty() const { return size_ == 0; } |
| 1225 | |
| 1226 | // The height of the btree. An empty tree will have height 0. |
| 1227 | size_type height() const { |
| 1228 | size_type h = 0; |
| 1229 | if (root()) { |
| 1230 | // Count the length of the chain from the leftmost node up to the |
| 1231 | // root. We actually count from the root back around to the level below |
| 1232 | // the root, but the calculation is the same because of the circularity |
| 1233 | // of that traversal. |
| 1234 | const node_type *n = root(); |
| 1235 | do { |
| 1236 | ++h; |
| 1237 | n = n->parent(); |
| 1238 | } while (n != root()); |
| 1239 | } |
| 1240 | return h; |
| 1241 | } |
| 1242 | |
| 1243 | // The number of internal, leaf and total nodes used by the btree. |
| 1244 | size_type leaf_nodes() const { |
| 1245 | return internal_stats(root()).leaf_nodes; |
| 1246 | } |
| 1247 | size_type internal_nodes() const { |
| 1248 | return internal_stats(root()).internal_nodes; |
| 1249 | } |
| 1250 | size_type nodes() const { |
| 1251 | node_stats stats = internal_stats(root()); |
| 1252 | return stats.leaf_nodes + stats.internal_nodes; |
| 1253 | } |
| 1254 | |
| 1255 | // The total number of bytes used by the btree. |
| 1256 | size_type bytes_used() const { |
| 1257 | node_stats stats = internal_stats(root()); |
| 1258 | if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { |
| 1259 | return sizeof(*this) + |
| 1260 | node_type::LeafSize(root()->max_count()); |
| 1261 | } else { |
| 1262 | return sizeof(*this) + |
| 1263 | stats.leaf_nodes * node_type::LeafSize() + |
| 1264 | stats.internal_nodes * node_type::InternalSize(); |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | // The average number of bytes used per value stored in the btree. |
| 1269 | static double average_bytes_per_value() { |
| 1270 | // Returns the number of bytes per value on a leaf node that is 75% |
| 1271 | // full. Experimentally, this matches up nicely with the computed number of |
| 1272 | // bytes per value in trees that had their values inserted in random order. |
| 1273 | return node_type::LeafSize() / (kNodeValues * 0.75); |
| 1274 | } |
| 1275 | |
| 1276 | // The fullness of the btree. Computed as the number of elements in the btree |
| 1277 | // divided by the maximum number of elements a tree with the current number |
| 1278 | // of nodes could hold. A value of 1 indicates perfect space |
| 1279 | // utilization. Smaller values indicate space wastage. |
| 1280 | double fullness() const { |
| 1281 | return static_cast<double>(size()) / (nodes() * kNodeValues); |
| 1282 | } |
| 1283 | // The overhead of the btree structure in bytes per node. Computed as the |
| 1284 | // total number of bytes used by the btree minus the number of bytes used for |
| 1285 | // storing elements divided by the number of elements. |
| 1286 | double overhead() const { |
| 1287 | if (empty()) { |
| 1288 | return 0.0; |
| 1289 | } |
| 1290 | return (bytes_used() - size() * sizeof(value_type)) / |
| 1291 | static_cast<double>(size()); |
| 1292 | } |
| 1293 | |
| 1294 | // The allocator used by the btree. |
| 1295 | allocator_type get_allocator() const { |
| 1296 | return allocator(); |
| 1297 | } |
| 1298 | |
| 1299 | private: |
| 1300 | // Internal accessor routines. |
| 1301 | node_type *root() { return root_.template get<2>(); } |
| 1302 | const node_type *root() const { return root_.template get<2>(); } |
| 1303 | node_type *&mutable_root() noexcept { return root_.template get<2>(); } |
| 1304 | key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); } |
| 1305 | |
| 1306 | // The leftmost node is stored as the parent of the root node. |
| 1307 | node_type *leftmost() { return root()->parent(); } |
| 1308 | const node_type *leftmost() const { return root()->parent(); } |
| 1309 | |
| 1310 | // Allocator routines. |
| 1311 | allocator_type *mutable_allocator() noexcept { |
| 1312 | return &root_.template get<1>(); |
| 1313 | } |
| 1314 | const allocator_type &allocator() const noexcept { |
| 1315 | return root_.template get<1>(); |
| 1316 | } |
| 1317 | |
| 1318 | // Allocates a correctly aligned node of at least size bytes using the |
| 1319 | // allocator. |
| 1320 | node_type *allocate(const size_type size) { |
| 1321 | return reinterpret_cast<node_type *>( |
| 1322 | absl::container_internal::Allocate<node_type::Alignment()>( |
| 1323 | mutable_allocator(), size)); |
| 1324 | } |
| 1325 | |
| 1326 | // Node creation/deletion routines. |
| 1327 | node_type* new_internal_node(node_type *parent) { |
| 1328 | node_type *p = allocate(node_type::InternalSize()); |
| 1329 | return node_type::init_internal(p, parent); |
| 1330 | } |
| 1331 | node_type* new_leaf_node(node_type *parent) { |
| 1332 | node_type *p = allocate(node_type::LeafSize()); |
| 1333 | return node_type::init_leaf(p, parent, kNodeValues); |
| 1334 | } |
| 1335 | node_type *new_leaf_root_node(const int max_count) { |
| 1336 | node_type *p = allocate(node_type::LeafSize(max_count)); |
| 1337 | return node_type::init_leaf(p, p, max_count); |
| 1338 | } |
| 1339 | |
| 1340 | // Deletion helper routines. |
| 1341 | void erase_same_node(iterator begin, iterator end); |
| 1342 | iterator erase_from_leaf_node(iterator begin, size_type to_erase); |
| 1343 | iterator rebalance_after_delete(iterator iter); |
| 1344 | |
| 1345 | // Deallocates a node of a certain size in bytes using the allocator. |
| 1346 | void deallocate(const size_type size, node_type *node) { |
| 1347 | absl::container_internal::Deallocate<node_type::Alignment()>( |
| 1348 | mutable_allocator(), node, size); |
| 1349 | } |
| 1350 | |
| 1351 | void delete_internal_node(node_type *node) { |
| 1352 | node->destroy(mutable_allocator()); |
| 1353 | deallocate(node_type::InternalSize(), node); |
| 1354 | } |
| 1355 | void delete_leaf_node(node_type *node) { |
| 1356 | node->destroy(mutable_allocator()); |
| 1357 | deallocate(node_type::LeafSize(node->max_count()), node); |
| 1358 | } |
| 1359 | |
| 1360 | // Rebalances or splits the node iter points to. |
| 1361 | void rebalance_or_split(iterator *iter); |
| 1362 | |
| 1363 | // Merges the values of left, right and the delimiting key on their parent |
| 1364 | // onto left, removing the delimiting key and deleting right. |
| 1365 | void merge_nodes(node_type *left, node_type *right); |
| 1366 | |
| 1367 | // Tries to merge node with its left or right sibling, and failing that, |
| 1368 | // rebalance with its left or right sibling. Returns true if a merge |
| 1369 | // occurred, at which point it is no longer valid to access node. Returns |
| 1370 | // false if no merging took place. |
| 1371 | bool try_merge_or_rebalance(iterator *iter); |
| 1372 | |
| 1373 | // Tries to shrink the height of the tree by 1. |
| 1374 | void try_shrink(); |
| 1375 | |
| 1376 | iterator internal_end(iterator iter) { |
| 1377 | return iter.node != nullptr ? iter : end(); |
| 1378 | } |
| 1379 | const_iterator internal_end(const_iterator iter) const { |
| 1380 | return iter.node != nullptr ? iter : end(); |
| 1381 | } |
| 1382 | |
| 1383 | // Emplaces a value into the btree immediately before iter. Requires that |
| 1384 | // key(v) <= iter.key() and (--iter).key() <= key(v). |
| 1385 | template <typename... Args> |
| 1386 | iterator internal_emplace(iterator iter, Args &&... args); |
| 1387 | |
| 1388 | // Returns an iterator pointing to the first value >= the value "iter" is |
| 1389 | // pointing at. Note that "iter" might be pointing to an invalid location as |
| 1390 | // iter.position == iter.node->count(). This routine simply moves iter up in |
| 1391 | // the tree to a valid location. |
| 1392 | // Requires: iter.node is non-null. |
| 1393 | template <typename IterType> |
| 1394 | static IterType internal_last(IterType iter); |
| 1395 | |
| 1396 | // Returns an iterator pointing to the leaf position at which key would |
| 1397 | // reside in the tree. We provide 2 versions of internal_locate. The first |
| 1398 | // version uses a less-than comparator and is incapable of distinguishing when |
| 1399 | // there is an exact match. The second version is for the key-compare-to |
| 1400 | // specialization and distinguishes exact matches. The key-compare-to |
| 1401 | // specialization allows the caller to avoid a subsequent comparison to |
| 1402 | // determine if an exact match was made, which is important for keys with |
| 1403 | // expensive comparison, such as strings. |
| 1404 | template <typename K> |
| 1405 | SearchResult<iterator, is_key_compare_to::value> internal_locate( |
| 1406 | const K &key) const; |
| 1407 | |
| 1408 | template <typename K> |
| 1409 | SearchResult<iterator, false> internal_locate_impl( |
| 1410 | const K &key, std::false_type /* IsCompareTo */) const; |
| 1411 | |
| 1412 | template <typename K> |
| 1413 | SearchResult<iterator, true> internal_locate_impl( |
| 1414 | const K &key, std::true_type /* IsCompareTo */) const; |
| 1415 | |
| 1416 | // Internal routine which implements lower_bound(). |
| 1417 | template <typename K> |
| 1418 | iterator internal_lower_bound(const K &key) const; |
| 1419 | |
| 1420 | // Internal routine which implements upper_bound(). |
| 1421 | template <typename K> |
| 1422 | iterator internal_upper_bound(const K &key) const; |
| 1423 | |
| 1424 | // Internal routine which implements find(). |
| 1425 | template <typename K> |
| 1426 | iterator internal_find(const K &key) const; |
| 1427 | |
| 1428 | // Deletes a node and all of its children. |
| 1429 | void internal_clear(node_type *node); |
| 1430 | |
| 1431 | // Verifies the tree structure of node. |
| 1432 | int internal_verify(const node_type *node, |
| 1433 | const key_type *lo, const key_type *hi) const; |
| 1434 | |
| 1435 | node_stats internal_stats(const node_type *node) const { |
| 1436 | // The root can be a static empty node. |
| 1437 | if (node == nullptr || (node == root() && empty())) { |
| 1438 | return node_stats(0, 0); |
| 1439 | } |
| 1440 | if (node->leaf()) { |
| 1441 | return node_stats(1, 0); |
| 1442 | } |
| 1443 | node_stats res(0, 1); |
| 1444 | for (int i = 0; i <= node->count(); ++i) { |
| 1445 | res += internal_stats(node->child(i)); |
| 1446 | } |
| 1447 | return res; |
| 1448 | } |
| 1449 | |
| 1450 | public: |
| 1451 | // Exposed only for tests. |
| 1452 | static bool testonly_uses_linear_node_search() { |
| 1453 | return node_type::testonly_uses_linear_node_search(); |
| 1454 | } |
| 1455 | |
| 1456 | private: |
| 1457 | // We use compressed tuple in order to save space because key_compare and |
| 1458 | // allocator_type are usually empty. |
| 1459 | absl::container_internal::CompressedTuple<key_compare, allocator_type, |
| 1460 | node_type *> |
| 1461 | root_; |
| 1462 | |
| 1463 | // A pointer to the rightmost node. Note that the leftmost node is stored as |
| 1464 | // the root's parent. |
| 1465 | node_type *rightmost_; |
| 1466 | |
| 1467 | // Number of values. |
| 1468 | size_type size_; |
| 1469 | }; |
| 1470 | |
| 1471 | //// |
| 1472 | // btree_node methods |
| 1473 | template <typename P> |
| 1474 | template <typename... Args> |
| 1475 | inline void btree_node<P>::emplace_value(const size_type i, |
| 1476 | allocator_type *alloc, |
| 1477 | Args &&... args) { |
| 1478 | assert(i <= count()); |
| 1479 | // Shift old values to create space for new value and then construct it in |
| 1480 | // place. |
| 1481 | if (i < count()) { |
| 1482 | value_init(count(), alloc, slot(count() - 1)); |
| 1483 | for (size_type j = count() - 1; j > i; --j) |
| 1484 | params_type::move(alloc, slot(j - 1), slot(j)); |
| 1485 | value_destroy(i, alloc); |
| 1486 | } |
| 1487 | value_init(i, alloc, std::forward<Args>(args)...); |
| 1488 | set_count(count() + 1); |
| 1489 | |
| 1490 | if (!leaf() && count() > i + 1) { |
| 1491 | for (int j = count(); j > i + 1; --j) { |
| 1492 | set_child(j, child(j - 1)); |
| 1493 | } |
| 1494 | clear_child(i + 1); |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | template <typename P> |
| 1499 | inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) { |
| 1500 | if (!leaf() && count() > i + 1) { |
| 1501 | assert(child(i + 1)->count() == 0); |
| 1502 | for (size_type j = i + 1; j < count(); ++j) { |
| 1503 | set_child(j, child(j + 1)); |
| 1504 | } |
| 1505 | clear_child(count()); |
| 1506 | } |
| 1507 | |
| 1508 | remove_values_ignore_children(i, /*to_erase=*/1, alloc); |
| 1509 | } |
| 1510 | |
| 1511 | template <typename P> |
| 1512 | inline void btree_node<P>::remove_values_ignore_children( |
| 1513 | const int i, const int to_erase, allocator_type *alloc) { |
| 1514 | params_type::move(alloc, slot(i + to_erase), slot(count()), slot(i)); |
| 1515 | value_destroy_n(count() - to_erase, to_erase, alloc); |
| 1516 | set_count(count() - to_erase); |
| 1517 | } |
| 1518 | |
| 1519 | template <typename P> |
| 1520 | void btree_node<P>::rebalance_right_to_left(const int to_move, |
| 1521 | btree_node *right, |
| 1522 | allocator_type *alloc) { |
| 1523 | assert(parent() == right->parent()); |
| 1524 | assert(position() + 1 == right->position()); |
| 1525 | assert(right->count() >= count()); |
| 1526 | assert(to_move >= 1); |
| 1527 | assert(to_move <= right->count()); |
| 1528 | |
| 1529 | // 1) Move the delimiting value in the parent to the left node. |
| 1530 | value_init(count(), alloc, parent()->slot(position())); |
| 1531 | |
| 1532 | // 2) Move the (to_move - 1) values from the right node to the left node. |
| 1533 | right->uninitialized_move_n(to_move - 1, 0, count() + 1, this, alloc); |
| 1534 | |
| 1535 | // 3) Move the new delimiting value to the parent from the right node. |
| 1536 | params_type::move(alloc, right->slot(to_move - 1), |
| 1537 | parent()->slot(position())); |
| 1538 | |
| 1539 | // 4) Shift the values in the right node to their correct position. |
| 1540 | params_type::move(alloc, right->slot(to_move), right->slot(right->count()), |
| 1541 | right->slot(0)); |
| 1542 | |
| 1543 | // 5) Destroy the now-empty to_move entries in the right node. |
| 1544 | right->value_destroy_n(right->count() - to_move, to_move, alloc); |
| 1545 | |
| 1546 | if (!leaf()) { |
| 1547 | // Move the child pointers from the right to the left node. |
| 1548 | for (int i = 0; i < to_move; ++i) { |
| 1549 | init_child(count() + i + 1, right->child(i)); |
| 1550 | } |
| 1551 | for (int i = 0; i <= right->count() - to_move; ++i) { |
| 1552 | assert(i + to_move <= right->max_count()); |
| 1553 | right->init_child(i, right->child(i + to_move)); |
| 1554 | right->clear_child(i + to_move); |
| 1555 | } |
| 1556 | } |
| 1557 | |
| 1558 | // Fixup the counts on the left and right nodes. |
| 1559 | set_count(count() + to_move); |
| 1560 | right->set_count(right->count() - to_move); |
| 1561 | } |
| 1562 | |
| 1563 | template <typename P> |
| 1564 | void btree_node<P>::rebalance_left_to_right(const int to_move, |
| 1565 | btree_node *right, |
| 1566 | allocator_type *alloc) { |
| 1567 | assert(parent() == right->parent()); |
| 1568 | assert(position() + 1 == right->position()); |
| 1569 | assert(count() >= right->count()); |
| 1570 | assert(to_move >= 1); |
| 1571 | assert(to_move <= count()); |
| 1572 | |
| 1573 | // Values in the right node are shifted to the right to make room for the |
| 1574 | // new to_move values. Then, the delimiting value in the parent and the |
| 1575 | // other (to_move - 1) values in the left node are moved into the right node. |
| 1576 | // Lastly, a new delimiting value is moved from the left node into the |
| 1577 | // parent, and the remaining empty left node entries are destroyed. |
| 1578 | |
| 1579 | if (right->count() >= to_move) { |
| 1580 | // The original location of the right->count() values are sufficient to hold |
| 1581 | // the new to_move entries from the parent and left node. |
| 1582 | |
| 1583 | // 1) Shift existing values in the right node to their correct positions. |
| 1584 | right->uninitialized_move_n(to_move, right->count() - to_move, |
| 1585 | right->count(), right, alloc); |
| 1586 | for (slot_type *src = right->slot(right->count() - to_move - 1), |
| 1587 | *dest = right->slot(right->count() - 1), |
| 1588 | *end = right->slot(0); |
| 1589 | src >= end; --src, --dest) { |
| 1590 | params_type::move(alloc, src, dest); |
| 1591 | } |
| 1592 | |
| 1593 | // 2) Move the delimiting value in the parent to the right node. |
| 1594 | params_type::move(alloc, parent()->slot(position()), |
| 1595 | right->slot(to_move - 1)); |
| 1596 | |
| 1597 | // 3) Move the (to_move - 1) values from the left node to the right node. |
| 1598 | params_type::move(alloc, slot(count() - (to_move - 1)), slot(count()), |
| 1599 | right->slot(0)); |
| 1600 | } else { |
| 1601 | // The right node does not have enough initialized space to hold the new |
| 1602 | // to_move entries, so part of them will move to uninitialized space. |
| 1603 | |
| 1604 | // 1) Shift existing values in the right node to their correct positions. |
| 1605 | right->uninitialized_move_n(right->count(), 0, to_move, right, alloc); |
| 1606 | |
| 1607 | // 2) Move the delimiting value in the parent to the right node. |
| 1608 | right->value_init(to_move - 1, alloc, parent()->slot(position())); |
| 1609 | |
| 1610 | // 3) Move the (to_move - 1) values from the left node to the right node. |
| 1611 | const size_type uninitialized_remaining = to_move - right->count() - 1; |
| 1612 | uninitialized_move_n(uninitialized_remaining, |
| 1613 | count() - uninitialized_remaining, right->count(), |
| 1614 | right, alloc); |
| 1615 | params_type::move(alloc, slot(count() - (to_move - 1)), |
| 1616 | slot(count() - uninitialized_remaining), right->slot(0)); |
| 1617 | } |
| 1618 | |
| 1619 | // 4) Move the new delimiting value to the parent from the left node. |
| 1620 | params_type::move(alloc, slot(count() - to_move), parent()->slot(position())); |
| 1621 | |
| 1622 | // 5) Destroy the now-empty to_move entries in the left node. |
| 1623 | value_destroy_n(count() - to_move, to_move, alloc); |
| 1624 | |
| 1625 | if (!leaf()) { |
| 1626 | // Move the child pointers from the left to the right node. |
| 1627 | for (int i = right->count(); i >= 0; --i) { |
| 1628 | right->init_child(i + to_move, right->child(i)); |
| 1629 | right->clear_child(i); |
| 1630 | } |
| 1631 | for (int i = 1; i <= to_move; ++i) { |
| 1632 | right->init_child(i - 1, child(count() - to_move + i)); |
| 1633 | clear_child(count() - to_move + i); |
| 1634 | } |
| 1635 | } |
| 1636 | |
| 1637 | // Fixup the counts on the left and right nodes. |
| 1638 | set_count(count() - to_move); |
| 1639 | right->set_count(right->count() + to_move); |
| 1640 | } |
| 1641 | |
| 1642 | template <typename P> |
| 1643 | void btree_node<P>::split(const int insert_position, btree_node *dest, |
| 1644 | allocator_type *alloc) { |
| 1645 | assert(dest->count() == 0); |
| 1646 | assert(max_count() == kNodeValues); |
| 1647 | |
| 1648 | // We bias the split based on the position being inserted. If we're |
| 1649 | // inserting at the beginning of the left node then bias the split to put |
| 1650 | // more values on the right node. If we're inserting at the end of the |
| 1651 | // right node then bias the split to put more values on the left node. |
| 1652 | if (insert_position == 0) { |
| 1653 | dest->set_count(count() - 1); |
| 1654 | } else if (insert_position == kNodeValues) { |
| 1655 | dest->set_count(0); |
| 1656 | } else { |
| 1657 | dest->set_count(count() / 2); |
| 1658 | } |
| 1659 | set_count(count() - dest->count()); |
| 1660 | assert(count() >= 1); |
| 1661 | |
| 1662 | // Move values from the left sibling to the right sibling. |
| 1663 | uninitialized_move_n(dest->count(), count(), 0, dest, alloc); |
| 1664 | |
| 1665 | // Destroy the now-empty entries in the left node. |
| 1666 | value_destroy_n(count(), dest->count(), alloc); |
| 1667 | |
| 1668 | // The split key is the largest value in the left sibling. |
| 1669 | set_count(count() - 1); |
| 1670 | parent()->emplace_value(position(), alloc, slot(count())); |
| 1671 | value_destroy(count(), alloc); |
| 1672 | parent()->init_child(position() + 1, dest); |
| 1673 | |
| 1674 | if (!leaf()) { |
| 1675 | for (int i = 0; i <= dest->count(); ++i) { |
| 1676 | assert(child(count() + i + 1) != nullptr); |
| 1677 | dest->init_child(i, child(count() + i + 1)); |
| 1678 | clear_child(count() + i + 1); |
| 1679 | } |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | template <typename P> |
| 1684 | void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { |
| 1685 | assert(parent() == src->parent()); |
| 1686 | assert(position() + 1 == src->position()); |
| 1687 | |
| 1688 | // Move the delimiting value to the left node. |
| 1689 | value_init(count(), alloc, parent()->slot(position())); |
| 1690 | |
| 1691 | // Move the values from the right to the left node. |
| 1692 | src->uninitialized_move_n(src->count(), 0, count() + 1, this, alloc); |
| 1693 | |
| 1694 | // Destroy the now-empty entries in the right node. |
| 1695 | src->value_destroy_n(0, src->count(), alloc); |
| 1696 | |
| 1697 | if (!leaf()) { |
| 1698 | // Move the child pointers from the right to the left node. |
| 1699 | for (int i = 0; i <= src->count(); ++i) { |
| 1700 | init_child(count() + i + 1, src->child(i)); |
| 1701 | src->clear_child(i); |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | // Fixup the counts on the src and dest nodes. |
| 1706 | set_count(1 + count() + src->count()); |
| 1707 | src->set_count(0); |
| 1708 | |
| 1709 | // Remove the value on the parent node. |
| 1710 | parent()->remove_value(position(), alloc); |
| 1711 | } |
| 1712 | |
| 1713 | template <typename P> |
| 1714 | void btree_node<P>::swap(btree_node *x, allocator_type *alloc) { |
| 1715 | using std::swap; |
| 1716 | assert(leaf() == x->leaf()); |
| 1717 | |
| 1718 | // Determine which is the smaller/larger node. |
| 1719 | btree_node *smaller = this, *larger = x; |
| 1720 | if (smaller->count() > larger->count()) { |
| 1721 | swap(smaller, larger); |
| 1722 | } |
| 1723 | |
| 1724 | // Swap the values. |
| 1725 | for (slot_type *a = smaller->slot(0), *b = larger->slot(0), |
| 1726 | *end = a + smaller->count(); |
| 1727 | a != end; ++a, ++b) { |
| 1728 | params_type::swap(alloc, a, b); |
| 1729 | } |
| 1730 | |
| 1731 | // Move values that can't be swapped. |
| 1732 | const size_type to_move = larger->count() - smaller->count(); |
| 1733 | larger->uninitialized_move_n(to_move, smaller->count(), smaller->count(), |
| 1734 | smaller, alloc); |
| 1735 | larger->value_destroy_n(smaller->count(), to_move, alloc); |
| 1736 | |
| 1737 | if (!leaf()) { |
| 1738 | // Swap the child pointers. |
| 1739 | std::swap_ranges(&smaller->mutable_child(0), |
| 1740 | &smaller->mutable_child(smaller->count() + 1), |
| 1741 | &larger->mutable_child(0)); |
| 1742 | // Update swapped children's parent pointers. |
| 1743 | int i = 0; |
| 1744 | for (; i <= smaller->count(); ++i) { |
| 1745 | smaller->child(i)->set_parent(smaller); |
| 1746 | larger->child(i)->set_parent(larger); |
| 1747 | } |
| 1748 | // Move the child pointers that couldn't be swapped. |
| 1749 | for (; i <= larger->count(); ++i) { |
| 1750 | smaller->init_child(i, larger->child(i)); |
| 1751 | larger->clear_child(i); |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | // Swap the counts. |
| 1756 | swap(mutable_count(), x->mutable_count()); |
| 1757 | } |
| 1758 | |
| 1759 | //// |
| 1760 | // btree_iterator methods |
| 1761 | template <typename N, typename R, typename P> |
| 1762 | void btree_iterator<N, R, P>::increment_slow() { |
| 1763 | if (node->leaf()) { |
| 1764 | assert(position >= node->count()); |
| 1765 | btree_iterator save(*this); |
| 1766 | while (position == node->count() && !node->is_root()) { |
| 1767 | assert(node->parent()->child(node->position()) == node); |
| 1768 | position = node->position(); |
| 1769 | node = node->parent(); |
| 1770 | } |
| 1771 | if (position == node->count()) { |
| 1772 | *this = save; |
| 1773 | } |
| 1774 | } else { |
| 1775 | assert(position < node->count()); |
| 1776 | node = node->child(position + 1); |
| 1777 | while (!node->leaf()) { |
| 1778 | node = node->child(0); |
| 1779 | } |
| 1780 | position = 0; |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | template <typename N, typename R, typename P> |
| 1785 | void btree_iterator<N, R, P>::decrement_slow() { |
| 1786 | if (node->leaf()) { |
| 1787 | assert(position <= -1); |
| 1788 | btree_iterator save(*this); |
| 1789 | while (position < 0 && !node->is_root()) { |
| 1790 | assert(node->parent()->child(node->position()) == node); |
| 1791 | position = node->position() - 1; |
| 1792 | node = node->parent(); |
| 1793 | } |
| 1794 | if (position < 0) { |
| 1795 | *this = save; |
| 1796 | } |
| 1797 | } else { |
| 1798 | assert(position >= 0); |
| 1799 | node = node->child(position); |
| 1800 | while (!node->leaf()) { |
| 1801 | node = node->child(node->count()); |
| 1802 | } |
| 1803 | position = node->count() - 1; |
| 1804 | } |
| 1805 | } |
| 1806 | |
| 1807 | //// |
| 1808 | // btree methods |
| 1809 | template <typename P> |
| 1810 | template <typename Btree> |
| 1811 | void btree<P>::copy_or_move_values_in_order(Btree *x) { |
| 1812 | static_assert(std::is_same<btree, Btree>::value || |
| 1813 | std::is_same<const btree, Btree>::value, |
| 1814 | "Btree type must be same or const."); |
| 1815 | assert(empty()); |
| 1816 | |
| 1817 | // We can avoid key comparisons because we know the order of the |
| 1818 | // values is the same order we'll store them in. |
| 1819 | auto iter = x->begin(); |
| 1820 | if (iter == x->end()) return; |
| 1821 | insert_multi(maybe_move_from_iterator(iter)); |
| 1822 | ++iter; |
| 1823 | for (; iter != x->end(); ++iter) { |
| 1824 | // If the btree is not empty, we can just insert the new value at the end |
| 1825 | // of the tree. |
| 1826 | internal_emplace(end(), maybe_move_from_iterator(iter)); |
| 1827 | } |
| 1828 | } |
| 1829 | |
| 1830 | template <typename P> |
| 1831 | constexpr bool btree<P>::static_assert_validation() { |
| 1832 | static_assert(std::is_nothrow_copy_constructible<key_compare>::value, |
| 1833 | "Key comparison must be nothrow copy constructible"); |
| 1834 | static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, |
| 1835 | "Allocator must be nothrow copy constructible"); |
| 1836 | static_assert(type_traits_internal::is_trivially_copyable<iterator>::value, |
| 1837 | "iterator not trivially copyable."); |
| 1838 | |
| 1839 | // Note: We assert that kTargetValues, which is computed from |
| 1840 | // Params::kTargetNodeSize, must fit the node_type::field_type. |
| 1841 | static_assert( |
| 1842 | kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))), |
| 1843 | "target node size too large"); |
| 1844 | |
| 1845 | // Verify that key_compare returns an absl::{weak,strong}_ordering or bool. |
| 1846 | using compare_result_type = |
| 1847 | absl::result_of_t<key_compare(key_type, key_type)>; |
| 1848 | static_assert( |
| 1849 | std::is_same<compare_result_type, bool>::value || |
| 1850 | std::is_convertible<compare_result_type, absl::weak_ordering>::value, |
| 1851 | "key comparison function must return absl::{weak,strong}_ordering or " |
| 1852 | "bool."); |
| 1853 | |
| 1854 | // Test the assumption made in setting kNodeValueSpace. |
| 1855 | static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, |
| 1856 | "node space assumption incorrect"); |
| 1857 | |
| 1858 | return true; |
| 1859 | } |
| 1860 | |
| 1861 | template <typename P> |
| 1862 | btree<P>::btree(const key_compare &comp, const allocator_type &alloc) |
| 1863 | : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} |
| 1864 | |
| 1865 | template <typename P> |
| 1866 | btree<P>::btree(const btree &x) : btree(x.key_comp(), x.allocator()) { |
| 1867 | copy_or_move_values_in_order(&x); |
| 1868 | } |
| 1869 | |
| 1870 | template <typename P> |
| 1871 | template <typename... Args> |
| 1872 | auto btree<P>::insert_unique(const key_type &key, Args &&... args) |
| 1873 | -> std::pair<iterator, bool> { |
| 1874 | if (empty()) { |
| 1875 | mutable_root() = rightmost_ = new_leaf_root_node(1); |
| 1876 | } |
| 1877 | |
| 1878 | auto res = internal_locate(key); |
| 1879 | iterator &iter = res.value; |
| 1880 | |
| 1881 | if (res.HasMatch()) { |
| 1882 | if (res.IsEq()) { |
| 1883 | // The key already exists in the tree, do nothing. |
| 1884 | return {iter, false}; |
| 1885 | } |
| 1886 | } else { |
| 1887 | iterator last = internal_last(iter); |
| 1888 | if (last.node && !compare_keys(key, last.key())) { |
| 1889 | // The key already exists in the tree, do nothing. |
| 1890 | return {last, false}; |
| 1891 | } |
| 1892 | } |
| 1893 | return {internal_emplace(iter, std::forward<Args>(args)...), true}; |
| 1894 | } |
| 1895 | |
| 1896 | template <typename P> |
| 1897 | template <typename... Args> |
| 1898 | inline auto btree<P>::insert_hint_unique(iterator position, const key_type &key, |
| 1899 | Args &&... args) |
| 1900 | -> std::pair<iterator, bool> { |
| 1901 | if (!empty()) { |
| 1902 | if (position == end() || compare_keys(key, position.key())) { |
| 1903 | iterator prev = position; |
| 1904 | if (position == begin() || compare_keys((--prev).key(), key)) { |
| 1905 | // prev.key() < key < position.key() |
| 1906 | return {internal_emplace(position, std::forward<Args>(args)...), true}; |
| 1907 | } |
| 1908 | } else if (compare_keys(position.key(), key)) { |
| 1909 | ++position; |
| 1910 | if (position == end() || compare_keys(key, position.key())) { |
| 1911 | // {original `position`}.key() < key < {current `position`}.key() |
| 1912 | return {internal_emplace(position, std::forward<Args>(args)...), true}; |
| 1913 | } |
| 1914 | } else { |
| 1915 | // position.key() == key |
| 1916 | return {position, false}; |
| 1917 | } |
| 1918 | } |
| 1919 | return insert_unique(key, std::forward<Args>(args)...); |
| 1920 | } |
| 1921 | |
| 1922 | template <typename P> |
| 1923 | template <typename InputIterator> |
| 1924 | void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e) { |
| 1925 | for (; b != e; ++b) { |
| 1926 | insert_hint_unique(end(), params_type::key(*b), *b); |
| 1927 | } |
| 1928 | } |
| 1929 | |
| 1930 | template <typename P> |
| 1931 | template <typename ValueType> |
| 1932 | auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { |
| 1933 | if (empty()) { |
| 1934 | mutable_root() = rightmost_ = new_leaf_root_node(1); |
| 1935 | } |
| 1936 | |
| 1937 | iterator iter = internal_upper_bound(key); |
| 1938 | if (iter.node == nullptr) { |
| 1939 | iter = end(); |
| 1940 | } |
| 1941 | return internal_emplace(iter, std::forward<ValueType>(v)); |
| 1942 | } |
| 1943 | |
| 1944 | template <typename P> |
| 1945 | template <typename ValueType> |
| 1946 | auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { |
| 1947 | if (!empty()) { |
| 1948 | const key_type &key = params_type::key(v); |
| 1949 | if (position == end() || !compare_keys(position.key(), key)) { |
| 1950 | iterator prev = position; |
| 1951 | if (position == begin() || !compare_keys(key, (--prev).key())) { |
| 1952 | // prev.key() <= key <= position.key() |
| 1953 | return internal_emplace(position, std::forward<ValueType>(v)); |
| 1954 | } |
| 1955 | } else { |
| 1956 | iterator next = position; |
| 1957 | ++next; |
| 1958 | if (next == end() || !compare_keys(next.key(), key)) { |
| 1959 | // position.key() < key <= next.key() |
| 1960 | return internal_emplace(next, std::forward<ValueType>(v)); |
| 1961 | } |
| 1962 | } |
| 1963 | } |
| 1964 | return insert_multi(std::forward<ValueType>(v)); |
| 1965 | } |
| 1966 | |
| 1967 | template <typename P> |
| 1968 | template <typename InputIterator> |
| 1969 | void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { |
| 1970 | for (; b != e; ++b) { |
| 1971 | insert_hint_multi(end(), *b); |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | template <typename P> |
| 1976 | auto btree<P>::operator=(const btree &x) -> btree & { |
| 1977 | if (this != &x) { |
| 1978 | clear(); |
| 1979 | |
| 1980 | *mutable_key_comp() = x.key_comp(); |
| 1981 | if (absl::allocator_traits< |
| 1982 | allocator_type>::propagate_on_container_copy_assignment::value) { |
| 1983 | *mutable_allocator() = x.allocator(); |
| 1984 | } |
| 1985 | |
| 1986 | copy_or_move_values_in_order(&x); |
| 1987 | } |
| 1988 | return *this; |
| 1989 | } |
| 1990 | |
| 1991 | template <typename P> |
| 1992 | auto btree<P>::operator=(btree &&x) noexcept -> btree & { |
| 1993 | if (this != &x) { |
| 1994 | clear(); |
| 1995 | |
| 1996 | using std::swap; |
| 1997 | if (absl::allocator_traits< |
| 1998 | allocator_type>::propagate_on_container_copy_assignment::value) { |
| 1999 | // Note: `root_` also contains the allocator and the key comparator. |
| 2000 | swap(root_, x.root_); |
| 2001 | swap(rightmost_, x.rightmost_); |
| 2002 | swap(size_, x.size_); |
| 2003 | } else { |
| 2004 | if (allocator() == x.allocator()) { |
| 2005 | swap(mutable_root(), x.mutable_root()); |
| 2006 | swap(*mutable_key_comp(), *x.mutable_key_comp()); |
| 2007 | swap(rightmost_, x.rightmost_); |
| 2008 | swap(size_, x.size_); |
| 2009 | } else { |
| 2010 | // We aren't allowed to propagate the allocator and the allocator is |
| 2011 | // different so we can't take over its memory. We must move each element |
| 2012 | // individually. We need both `x` and `this` to have `x`s key comparator |
| 2013 | // while moving the values so we can't swap the key comparators. |
| 2014 | *mutable_key_comp() = x.key_comp(); |
| 2015 | copy_or_move_values_in_order(&x); |
| 2016 | } |
| 2017 | } |
| 2018 | } |
| 2019 | return *this; |
| 2020 | } |
| 2021 | |
| 2022 | template <typename P> |
| 2023 | auto btree<P>::erase(iterator iter) -> iterator { |
| 2024 | bool internal_delete = false; |
| 2025 | if (!iter.node->leaf()) { |
| 2026 | // Deletion of a value on an internal node. First, move the largest value |
| 2027 | // from our left child here, then delete that position (in remove_value() |
| 2028 | // below). We can get to the largest value from our left child by |
| 2029 | // decrementing iter. |
| 2030 | iterator internal_iter(iter); |
| 2031 | --iter; |
| 2032 | assert(iter.node->leaf()); |
| 2033 | assert(!compare_keys(internal_iter.key(), iter.key())); |
| 2034 | params_type::move(mutable_allocator(), iter.node->slot(iter.position), |
| 2035 | internal_iter.node->slot(internal_iter.position)); |
| 2036 | internal_delete = true; |
| 2037 | } |
| 2038 | |
| 2039 | // Delete the key from the leaf. |
| 2040 | iter.node->remove_value(iter.position, mutable_allocator()); |
| 2041 | --size_; |
| 2042 | |
| 2043 | // We want to return the next value after the one we just erased. If we |
| 2044 | // erased from an internal node (internal_delete == true), then the next |
| 2045 | // value is ++(++iter). If we erased from a leaf node (internal_delete == |
| 2046 | // false) then the next value is ++iter. Note that ++iter may point to an |
| 2047 | // internal node and the value in the internal node may move to a leaf node |
| 2048 | // (iter.node) when rebalancing is performed at the leaf level. |
| 2049 | |
| 2050 | iterator res = rebalance_after_delete(iter); |
| 2051 | |
| 2052 | // If we erased from an internal node, advance the iterator. |
| 2053 | if (internal_delete) { |
| 2054 | ++res; |
| 2055 | } |
| 2056 | return res; |
| 2057 | } |
| 2058 | |
| 2059 | template <typename P> |
| 2060 | auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { |
| 2061 | // Merge/rebalance as we walk back up the tree. |
| 2062 | iterator res(iter); |
| 2063 | bool first_iteration = true; |
| 2064 | for (;;) { |
| 2065 | if (iter.node == root()) { |
| 2066 | try_shrink(); |
| 2067 | if (empty()) { |
| 2068 | return end(); |
| 2069 | } |
| 2070 | break; |
| 2071 | } |
| 2072 | if (iter.node->count() >= kMinNodeValues) { |
| 2073 | break; |
| 2074 | } |
| 2075 | bool merged = try_merge_or_rebalance(&iter); |
| 2076 | // On the first iteration, we should update `res` with `iter` because `res` |
| 2077 | // may have been invalidated. |
| 2078 | if (first_iteration) { |
| 2079 | res = iter; |
| 2080 | first_iteration = false; |
| 2081 | } |
| 2082 | if (!merged) { |
| 2083 | break; |
| 2084 | } |
| 2085 | iter.position = iter.node->position(); |
| 2086 | iter.node = iter.node->parent(); |
| 2087 | } |
| 2088 | |
| 2089 | // Adjust our return value. If we're pointing at the end of a node, advance |
| 2090 | // the iterator. |
| 2091 | if (res.position == res.node->count()) { |
| 2092 | res.position = res.node->count() - 1; |
| 2093 | ++res; |
| 2094 | } |
| 2095 | |
| 2096 | return res; |
| 2097 | } |
| 2098 | |
| 2099 | template <typename P> |
| 2100 | auto btree<P>::erase(iterator begin, iterator end) |
| 2101 | -> std::pair<size_type, iterator> { |
| 2102 | difference_type count = std::distance(begin, end); |
| 2103 | assert(count >= 0); |
| 2104 | |
| 2105 | if (count == 0) { |
| 2106 | return {0, begin}; |
| 2107 | } |
| 2108 | |
| 2109 | if (count == size_) { |
| 2110 | clear(); |
| 2111 | return {count, this->end()}; |
| 2112 | } |
| 2113 | |
| 2114 | if (begin.node == end.node) { |
| 2115 | erase_same_node(begin, end); |
| 2116 | size_ -= count; |
| 2117 | return {count, rebalance_after_delete(begin)}; |
| 2118 | } |
| 2119 | |
| 2120 | const size_type target_size = size_ - count; |
| 2121 | while (size_ > target_size) { |
| 2122 | if (begin.node->leaf()) { |
| 2123 | const size_type remaining_to_erase = size_ - target_size; |
| 2124 | const size_type remaining_in_node = begin.node->count() - begin.position; |
| 2125 | begin = erase_from_leaf_node( |
| 2126 | begin, (std::min)(remaining_to_erase, remaining_in_node)); |
| 2127 | } else { |
| 2128 | begin = erase(begin); |
| 2129 | } |
| 2130 | } |
| 2131 | return {count, begin}; |
| 2132 | } |
| 2133 | |
| 2134 | template <typename P> |
| 2135 | void btree<P>::erase_same_node(iterator begin, iterator end) { |
| 2136 | assert(begin.node == end.node); |
| 2137 | assert(end.position > begin.position); |
| 2138 | |
| 2139 | node_type *node = begin.node; |
| 2140 | size_type to_erase = end.position - begin.position; |
| 2141 | if (!node->leaf()) { |
| 2142 | // Delete all children between begin and end. |
| 2143 | for (size_type i = 0; i < to_erase; ++i) { |
| 2144 | internal_clear(node->child(begin.position + i + 1)); |
| 2145 | } |
| 2146 | // Rotate children after end into new positions. |
| 2147 | for (size_type i = begin.position + to_erase + 1; i <= node->count(); ++i) { |
| 2148 | node->set_child(i - to_erase, node->child(i)); |
| 2149 | node->clear_child(i); |
| 2150 | } |
| 2151 | } |
| 2152 | node->remove_values_ignore_children(begin.position, to_erase, |
| 2153 | mutable_allocator()); |
| 2154 | |
| 2155 | // Do not need to update rightmost_, because |
| 2156 | // * either end == this->end(), and therefore node == rightmost_, and still |
| 2157 | // exists |
| 2158 | // * or end != this->end(), and therefore rightmost_ hasn't been erased, since |
| 2159 | // it wasn't covered in [begin, end) |
| 2160 | } |
| 2161 | |
| 2162 | template <typename P> |
| 2163 | auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase) |
| 2164 | -> iterator { |
| 2165 | node_type *node = begin.node; |
| 2166 | assert(node->leaf()); |
| 2167 | assert(node->count() > begin.position); |
| 2168 | assert(begin.position + to_erase <= node->count()); |
| 2169 | |
| 2170 | node->remove_values_ignore_children(begin.position, to_erase, |
| 2171 | mutable_allocator()); |
| 2172 | |
| 2173 | size_ -= to_erase; |
| 2174 | |
| 2175 | return rebalance_after_delete(begin); |
| 2176 | } |
| 2177 | |
| 2178 | template <typename P> |
| 2179 | template <typename K> |
| 2180 | auto btree<P>::erase_unique(const K &key) -> size_type { |
| 2181 | const iterator iter = internal_find(key); |
| 2182 | if (iter.node == nullptr) { |
| 2183 | // The key doesn't exist in the tree, return nothing done. |
| 2184 | return 0; |
| 2185 | } |
| 2186 | erase(iter); |
| 2187 | return 1; |
| 2188 | } |
| 2189 | |
| 2190 | template <typename P> |
| 2191 | template <typename K> |
| 2192 | auto btree<P>::erase_multi(const K &key) -> size_type { |
| 2193 | const iterator begin = internal_lower_bound(key); |
| 2194 | if (begin.node == nullptr) { |
| 2195 | // The key doesn't exist in the tree, return nothing done. |
| 2196 | return 0; |
| 2197 | } |
| 2198 | // Delete all of the keys between begin and upper_bound(key). |
| 2199 | const iterator end = internal_end(internal_upper_bound(key)); |
| 2200 | return erase(begin, end).first; |
| 2201 | } |
| 2202 | |
| 2203 | template <typename P> |
| 2204 | void btree<P>::clear() { |
| 2205 | if (!empty()) { |
| 2206 | internal_clear(root()); |
| 2207 | } |
| 2208 | mutable_root() = EmptyNode(); |
| 2209 | rightmost_ = EmptyNode(); |
| 2210 | size_ = 0; |
| 2211 | } |
| 2212 | |
| 2213 | template <typename P> |
| 2214 | void btree<P>::swap(btree &x) { |
| 2215 | using std::swap; |
| 2216 | if (absl::allocator_traits< |
| 2217 | allocator_type>::propagate_on_container_swap::value) { |
| 2218 | // Note: `root_` also contains the allocator and the key comparator. |
| 2219 | swap(root_, x.root_); |
| 2220 | } else { |
| 2221 | // It's undefined behavior if the allocators are unequal here. |
| 2222 | assert(allocator() == x.allocator()); |
| 2223 | swap(mutable_root(), x.mutable_root()); |
| 2224 | swap(*mutable_key_comp(), *x.mutable_key_comp()); |
| 2225 | } |
| 2226 | swap(rightmost_, x.rightmost_); |
| 2227 | swap(size_, x.size_); |
| 2228 | } |
| 2229 | |
| 2230 | template <typename P> |
| 2231 | void btree<P>::verify() const { |
| 2232 | assert(root() != nullptr); |
| 2233 | assert(leftmost() != nullptr); |
| 2234 | assert(rightmost_ != nullptr); |
| 2235 | assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); |
| 2236 | assert(leftmost() == (++const_iterator(root(), -1)).node); |
| 2237 | assert(rightmost_ == (--const_iterator(root(), root()->count())).node); |
| 2238 | assert(leftmost()->leaf()); |
| 2239 | assert(rightmost_->leaf()); |
| 2240 | } |
| 2241 | |
| 2242 | template <typename P> |
| 2243 | void btree<P>::rebalance_or_split(iterator *iter) { |
| 2244 | node_type *&node = iter->node; |
| 2245 | int &insert_position = iter->position; |
| 2246 | assert(node->count() == node->max_count()); |
| 2247 | assert(kNodeValues == node->max_count()); |
| 2248 | |
| 2249 | // First try to make room on the node by rebalancing. |
| 2250 | node_type *parent = node->parent(); |
| 2251 | if (node != root()) { |
| 2252 | if (node->position() > 0) { |
| 2253 | // Try rebalancing with our left sibling. |
| 2254 | node_type *left = parent->child(node->position() - 1); |
| 2255 | assert(left->max_count() == kNodeValues); |
| 2256 | if (left->count() < kNodeValues) { |
| 2257 | // We bias rebalancing based on the position being inserted. If we're |
| 2258 | // inserting at the end of the right node then we bias rebalancing to |
| 2259 | // fill up the left node. |
| 2260 | int to_move = (kNodeValues - left->count()) / |
| 2261 | (1 + (insert_position < kNodeValues)); |
| 2262 | to_move = (std::max)(1, to_move); |
| 2263 | |
| 2264 | if (((insert_position - to_move) >= 0) || |
| 2265 | ((left->count() + to_move) < kNodeValues)) { |
| 2266 | left->rebalance_right_to_left(to_move, node, mutable_allocator()); |
| 2267 | |
| 2268 | assert(node->max_count() - node->count() == to_move); |
| 2269 | insert_position = insert_position - to_move; |
| 2270 | if (insert_position < 0) { |
| 2271 | insert_position = insert_position + left->count() + 1; |
| 2272 | node = left; |
| 2273 | } |
| 2274 | |
| 2275 | assert(node->count() < node->max_count()); |
| 2276 | return; |
| 2277 | } |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | if (node->position() < parent->count()) { |
| 2282 | // Try rebalancing with our right sibling. |
| 2283 | node_type *right = parent->child(node->position() + 1); |
| 2284 | assert(right->max_count() == kNodeValues); |
| 2285 | if (right->count() < kNodeValues) { |
| 2286 | // We bias rebalancing based on the position being inserted. If we're |
| 2287 | // inserting at the beginning of the left node then we bias rebalancing |
| 2288 | // to fill up the right node. |
| 2289 | int to_move = |
| 2290 | (kNodeValues - right->count()) / (1 + (insert_position > 0)); |
| 2291 | to_move = (std::max)(1, to_move); |
| 2292 | |
| 2293 | if ((insert_position <= (node->count() - to_move)) || |
| 2294 | ((right->count() + to_move) < kNodeValues)) { |
| 2295 | node->rebalance_left_to_right(to_move, right, mutable_allocator()); |
| 2296 | |
| 2297 | if (insert_position > node->count()) { |
| 2298 | insert_position = insert_position - node->count() - 1; |
| 2299 | node = right; |
| 2300 | } |
| 2301 | |
| 2302 | assert(node->count() < node->max_count()); |
| 2303 | return; |
| 2304 | } |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | // Rebalancing failed, make sure there is room on the parent node for a new |
| 2309 | // value. |
| 2310 | assert(parent->max_count() == kNodeValues); |
| 2311 | if (parent->count() == kNodeValues) { |
| 2312 | iterator parent_iter(node->parent(), node->position()); |
| 2313 | rebalance_or_split(&parent_iter); |
| 2314 | } |
| 2315 | } else { |
| 2316 | // Rebalancing not possible because this is the root node. |
| 2317 | // Create a new root node and set the current root node as the child of the |
| 2318 | // new root. |
| 2319 | parent = new_internal_node(parent); |
| 2320 | parent->init_child(0, root()); |
| 2321 | mutable_root() = parent; |
| 2322 | // If the former root was a leaf node, then it's now the rightmost node. |
| 2323 | assert(!parent->child(0)->leaf() || parent->child(0) == rightmost_); |
| 2324 | } |
| 2325 | |
| 2326 | // Split the node. |
| 2327 | node_type *split_node; |
| 2328 | if (node->leaf()) { |
| 2329 | split_node = new_leaf_node(parent); |
| 2330 | node->split(insert_position, split_node, mutable_allocator()); |
| 2331 | if (rightmost_ == node) rightmost_ = split_node; |
| 2332 | } else { |
| 2333 | split_node = new_internal_node(parent); |
| 2334 | node->split(insert_position, split_node, mutable_allocator()); |
| 2335 | } |
| 2336 | |
| 2337 | if (insert_position > node->count()) { |
| 2338 | insert_position = insert_position - node->count() - 1; |
| 2339 | node = split_node; |
| 2340 | } |
| 2341 | } |
| 2342 | |
| 2343 | template <typename P> |
| 2344 | void btree<P>::merge_nodes(node_type *left, node_type *right) { |
| 2345 | left->merge(right, mutable_allocator()); |
| 2346 | if (right->leaf()) { |
| 2347 | if (rightmost_ == right) rightmost_ = left; |
| 2348 | delete_leaf_node(right); |
| 2349 | } else { |
| 2350 | delete_internal_node(right); |
| 2351 | } |
| 2352 | } |
| 2353 | |
| 2354 | template <typename P> |
| 2355 | bool btree<P>::try_merge_or_rebalance(iterator *iter) { |
| 2356 | node_type *parent = iter->node->parent(); |
| 2357 | if (iter->node->position() > 0) { |
| 2358 | // Try merging with our left sibling. |
| 2359 | node_type *left = parent->child(iter->node->position() - 1); |
| 2360 | assert(left->max_count() == kNodeValues); |
| 2361 | if ((1 + left->count() + iter->node->count()) <= kNodeValues) { |
| 2362 | iter->position += 1 + left->count(); |
| 2363 | merge_nodes(left, iter->node); |
| 2364 | iter->node = left; |
| 2365 | return true; |
| 2366 | } |
| 2367 | } |
| 2368 | if (iter->node->position() < parent->count()) { |
| 2369 | // Try merging with our right sibling. |
| 2370 | node_type *right = parent->child(iter->node->position() + 1); |
| 2371 | assert(right->max_count() == kNodeValues); |
| 2372 | if ((1 + iter->node->count() + right->count()) <= kNodeValues) { |
| 2373 | merge_nodes(iter->node, right); |
| 2374 | return true; |
| 2375 | } |
| 2376 | // Try rebalancing with our right sibling. We don't perform rebalancing if |
| 2377 | // we deleted the first element from iter->node and the node is not |
| 2378 | // empty. This is a small optimization for the common pattern of deleting |
| 2379 | // from the front of the tree. |
| 2380 | if ((right->count() > kMinNodeValues) && |
| 2381 | ((iter->node->count() == 0) || |
| 2382 | (iter->position > 0))) { |
| 2383 | int to_move = (right->count() - iter->node->count()) / 2; |
| 2384 | to_move = (std::min)(to_move, right->count() - 1); |
| 2385 | iter->node->rebalance_right_to_left(to_move, right, mutable_allocator()); |
| 2386 | return false; |
| 2387 | } |
| 2388 | } |
| 2389 | if (iter->node->position() > 0) { |
| 2390 | // Try rebalancing with our left sibling. We don't perform rebalancing if |
| 2391 | // we deleted the last element from iter->node and the node is not |
| 2392 | // empty. This is a small optimization for the common pattern of deleting |
| 2393 | // from the back of the tree. |
| 2394 | node_type *left = parent->child(iter->node->position() - 1); |
| 2395 | if ((left->count() > kMinNodeValues) && |
| 2396 | ((iter->node->count() == 0) || |
| 2397 | (iter->position < iter->node->count()))) { |
| 2398 | int to_move = (left->count() - iter->node->count()) / 2; |
| 2399 | to_move = (std::min)(to_move, left->count() - 1); |
| 2400 | left->rebalance_left_to_right(to_move, iter->node, mutable_allocator()); |
| 2401 | iter->position += to_move; |
| 2402 | return false; |
| 2403 | } |
| 2404 | } |
| 2405 | return false; |
| 2406 | } |
| 2407 | |
| 2408 | template <typename P> |
| 2409 | void btree<P>::try_shrink() { |
| 2410 | if (root()->count() > 0) { |
| 2411 | return; |
| 2412 | } |
| 2413 | // Deleted the last item on the root node, shrink the height of the tree. |
| 2414 | if (root()->leaf()) { |
| 2415 | assert(size() == 0); |
| 2416 | delete_leaf_node(root()); |
| 2417 | mutable_root() = EmptyNode(); |
| 2418 | rightmost_ = EmptyNode(); |
| 2419 | } else { |
| 2420 | node_type *child = root()->child(0); |
| 2421 | child->make_root(); |
| 2422 | delete_internal_node(root()); |
| 2423 | mutable_root() = child; |
| 2424 | } |
| 2425 | } |
| 2426 | |
| 2427 | template <typename P> |
| 2428 | template <typename IterType> |
| 2429 | inline IterType btree<P>::internal_last(IterType iter) { |
| 2430 | assert(iter.node != nullptr); |
| 2431 | while (iter.position == iter.node->count()) { |
| 2432 | iter.position = iter.node->position(); |
| 2433 | iter.node = iter.node->parent(); |
| 2434 | if (iter.node->leaf()) { |
| 2435 | iter.node = nullptr; |
| 2436 | break; |
| 2437 | } |
| 2438 | } |
| 2439 | return iter; |
| 2440 | } |
| 2441 | |
| 2442 | template <typename P> |
| 2443 | template <typename... Args> |
| 2444 | inline auto btree<P>::internal_emplace(iterator iter, Args &&... args) |
| 2445 | -> iterator { |
| 2446 | if (!iter.node->leaf()) { |
| 2447 | // We can't insert on an internal node. Instead, we'll insert after the |
| 2448 | // previous value which is guaranteed to be on a leaf node. |
| 2449 | --iter; |
| 2450 | ++iter.position; |
| 2451 | } |
| 2452 | const int max_count = iter.node->max_count(); |
| 2453 | if (iter.node->count() == max_count) { |
| 2454 | // Make room in the leaf for the new item. |
| 2455 | if (max_count < kNodeValues) { |
| 2456 | // Insertion into the root where the root is smaller than the full node |
| 2457 | // size. Simply grow the size of the root node. |
| 2458 | assert(iter.node == root()); |
| 2459 | iter.node = |
| 2460 | new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count)); |
| 2461 | iter.node->swap(root(), mutable_allocator()); |
| 2462 | delete_leaf_node(root()); |
| 2463 | mutable_root() = iter.node; |
| 2464 | rightmost_ = iter.node; |
| 2465 | } else { |
| 2466 | rebalance_or_split(&iter); |
| 2467 | } |
| 2468 | } |
| 2469 | iter.node->emplace_value(iter.position, mutable_allocator(), |
| 2470 | std::forward<Args>(args)...); |
| 2471 | ++size_; |
| 2472 | return iter; |
| 2473 | } |
| 2474 | |
| 2475 | template <typename P> |
| 2476 | template <typename K> |
| 2477 | inline auto btree<P>::internal_locate(const K &key) const |
| 2478 | -> SearchResult<iterator, is_key_compare_to::value> { |
| 2479 | return internal_locate_impl(key, is_key_compare_to()); |
| 2480 | } |
| 2481 | |
| 2482 | template <typename P> |
| 2483 | template <typename K> |
| 2484 | inline auto btree<P>::internal_locate_impl( |
| 2485 | const K &key, std::false_type /* IsCompareTo */) const |
| 2486 | -> SearchResult<iterator, false> { |
| 2487 | iterator iter(const_cast<node_type *>(root()), 0); |
| 2488 | for (;;) { |
| 2489 | iter.position = iter.node->lower_bound(key, key_comp()).value; |
| 2490 | // NOTE: we don't need to walk all the way down the tree if the keys are |
| 2491 | // equal, but determining equality would require doing an extra comparison |
| 2492 | // on each node on the way down, and we will need to go all the way to the |
| 2493 | // leaf node in the expected case. |
| 2494 | if (iter.node->leaf()) { |
| 2495 | break; |
| 2496 | } |
| 2497 | iter.node = iter.node->child(iter.position); |
| 2498 | } |
| 2499 | return {iter}; |
| 2500 | } |
| 2501 | |
| 2502 | template <typename P> |
| 2503 | template <typename K> |
| 2504 | inline auto btree<P>::internal_locate_impl( |
| 2505 | const K &key, std::true_type /* IsCompareTo */) const |
| 2506 | -> SearchResult<iterator, true> { |
| 2507 | iterator iter(const_cast<node_type *>(root()), 0); |
| 2508 | for (;;) { |
| 2509 | SearchResult<int, true> res = iter.node->lower_bound(key, key_comp()); |
| 2510 | iter.position = res.value; |
| 2511 | if (res.match == MatchKind::kEq) { |
| 2512 | return {iter, MatchKind::kEq}; |
| 2513 | } |
| 2514 | if (iter.node->leaf()) { |
| 2515 | break; |
| 2516 | } |
| 2517 | iter.node = iter.node->child(iter.position); |
| 2518 | } |
| 2519 | return {iter, MatchKind::kNe}; |
| 2520 | } |
| 2521 | |
| 2522 | template <typename P> |
| 2523 | template <typename K> |
| 2524 | auto btree<P>::internal_lower_bound(const K &key) const -> iterator { |
| 2525 | iterator iter(const_cast<node_type *>(root()), 0); |
| 2526 | for (;;) { |
| 2527 | iter.position = iter.node->lower_bound(key, key_comp()).value; |
| 2528 | if (iter.node->leaf()) { |
| 2529 | break; |
| 2530 | } |
| 2531 | iter.node = iter.node->child(iter.position); |
| 2532 | } |
| 2533 | return internal_last(iter); |
| 2534 | } |
| 2535 | |
| 2536 | template <typename P> |
| 2537 | template <typename K> |
| 2538 | auto btree<P>::internal_upper_bound(const K &key) const -> iterator { |
| 2539 | iterator iter(const_cast<node_type *>(root()), 0); |
| 2540 | for (;;) { |
| 2541 | iter.position = iter.node->upper_bound(key, key_comp()); |
| 2542 | if (iter.node->leaf()) { |
| 2543 | break; |
| 2544 | } |
| 2545 | iter.node = iter.node->child(iter.position); |
| 2546 | } |
| 2547 | return internal_last(iter); |
| 2548 | } |
| 2549 | |
| 2550 | template <typename P> |
| 2551 | template <typename K> |
| 2552 | auto btree<P>::internal_find(const K &key) const -> iterator { |
| 2553 | auto res = internal_locate(key); |
| 2554 | if (res.HasMatch()) { |
| 2555 | if (res.IsEq()) { |
| 2556 | return res.value; |
| 2557 | } |
| 2558 | } else { |
| 2559 | const iterator iter = internal_last(res.value); |
| 2560 | if (iter.node != nullptr && !compare_keys(key, iter.key())) { |
| 2561 | return iter; |
| 2562 | } |
| 2563 | } |
| 2564 | return {nullptr, 0}; |
| 2565 | } |
| 2566 | |
| 2567 | template <typename P> |
| 2568 | void btree<P>::internal_clear(node_type *node) { |
| 2569 | if (!node->leaf()) { |
| 2570 | for (int i = 0; i <= node->count(); ++i) { |
| 2571 | internal_clear(node->child(i)); |
| 2572 | } |
| 2573 | delete_internal_node(node); |
| 2574 | } else { |
| 2575 | delete_leaf_node(node); |
| 2576 | } |
| 2577 | } |
| 2578 | |
| 2579 | template <typename P> |
| 2580 | int btree<P>::internal_verify( |
| 2581 | const node_type *node, const key_type *lo, const key_type *hi) const { |
| 2582 | assert(node->count() > 0); |
| 2583 | assert(node->count() <= node->max_count()); |
| 2584 | if (lo) { |
| 2585 | assert(!compare_keys(node->key(0), *lo)); |
| 2586 | } |
| 2587 | if (hi) { |
| 2588 | assert(!compare_keys(*hi, node->key(node->count() - 1))); |
| 2589 | } |
| 2590 | for (int i = 1; i < node->count(); ++i) { |
| 2591 | assert(!compare_keys(node->key(i), node->key(i - 1))); |
| 2592 | } |
| 2593 | int count = node->count(); |
| 2594 | if (!node->leaf()) { |
| 2595 | for (int i = 0; i <= node->count(); ++i) { |
| 2596 | assert(node->child(i) != nullptr); |
| 2597 | assert(node->child(i)->parent() == node); |
| 2598 | assert(node->child(i)->position() == i); |
| 2599 | count += internal_verify( |
| 2600 | node->child(i), |
| 2601 | (i == 0) ? lo : &node->key(i - 1), |
| 2602 | (i == node->count()) ? hi : &node->key(i)); |
| 2603 | } |
| 2604 | } |
| 2605 | return count; |
| 2606 | } |
| 2607 | |
| 2608 | } // namespace container_internal |
| 2609 | } // namespace absl |
| 2610 | |
| 2611 | #endif // ABSL_CONTAINER_INTERNAL_BTREE_H_ |