Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2019 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/container/fixed_array.h" |
| 16 | |
| 17 | #include <stdio.h> |
| 18 | |
| 19 | #include <cstring> |
| 20 | #include <list> |
| 21 | #include <memory> |
| 22 | #include <numeric> |
| 23 | #include <scoped_allocator> |
| 24 | #include <stdexcept> |
| 25 | #include <string> |
| 26 | #include <vector> |
| 27 | |
| 28 | #include "gmock/gmock.h" |
| 29 | #include "gtest/gtest.h" |
| 30 | #include "absl/base/internal/exception_testing.h" |
| 31 | #include "absl/hash/hash_testing.h" |
| 32 | #include "absl/memory/memory.h" |
| 33 | |
| 34 | using ::testing::ElementsAreArray; |
| 35 | |
| 36 | namespace { |
| 37 | |
| 38 | // Helper routine to determine if a absl::FixedArray used stack allocation. |
| 39 | template <typename ArrayType> |
| 40 | static bool IsOnStack(const ArrayType& a) { |
| 41 | return a.size() <= ArrayType::inline_elements; |
| 42 | } |
| 43 | |
| 44 | class ConstructionTester { |
| 45 | public: |
| 46 | ConstructionTester() : self_ptr_(this), value_(0) { constructions++; } |
| 47 | ~ConstructionTester() { |
| 48 | assert(self_ptr_ == this); |
| 49 | self_ptr_ = nullptr; |
| 50 | destructions++; |
| 51 | } |
| 52 | |
| 53 | // These are incremented as elements are constructed and destructed so we can |
| 54 | // be sure all elements are properly cleaned up. |
| 55 | static int constructions; |
| 56 | static int destructions; |
| 57 | |
| 58 | void CheckConstructed() { assert(self_ptr_ == this); } |
| 59 | |
| 60 | void set(int value) { value_ = value; } |
| 61 | int get() { return value_; } |
| 62 | |
| 63 | private: |
| 64 | // self_ptr_ should always point to 'this' -- that's how we can be sure the |
| 65 | // constructor has been called. |
| 66 | ConstructionTester* self_ptr_; |
| 67 | int value_; |
| 68 | }; |
| 69 | |
| 70 | int ConstructionTester::constructions = 0; |
| 71 | int ConstructionTester::destructions = 0; |
| 72 | |
| 73 | // ThreeInts will initialize its three ints to the value stored in |
| 74 | // ThreeInts::counter. The constructor increments counter so that each object |
| 75 | // in an array of ThreeInts will have different values. |
| 76 | class ThreeInts { |
| 77 | public: |
| 78 | ThreeInts() { |
| 79 | x_ = counter; |
| 80 | y_ = counter; |
| 81 | z_ = counter; |
| 82 | ++counter; |
| 83 | } |
| 84 | |
| 85 | static int counter; |
| 86 | |
| 87 | int x_, y_, z_; |
| 88 | }; |
| 89 | |
| 90 | int ThreeInts::counter = 0; |
| 91 | |
| 92 | TEST(FixedArrayTest, CopyCtor) { |
| 93 | absl::FixedArray<int, 10> on_stack(5); |
| 94 | std::iota(on_stack.begin(), on_stack.end(), 0); |
| 95 | absl::FixedArray<int, 10> stack_copy = on_stack; |
| 96 | EXPECT_THAT(stack_copy, ElementsAreArray(on_stack)); |
| 97 | EXPECT_TRUE(IsOnStack(stack_copy)); |
| 98 | |
| 99 | absl::FixedArray<int, 10> allocated(15); |
| 100 | std::iota(allocated.begin(), allocated.end(), 0); |
| 101 | absl::FixedArray<int, 10> alloced_copy = allocated; |
| 102 | EXPECT_THAT(alloced_copy, ElementsAreArray(allocated)); |
| 103 | EXPECT_FALSE(IsOnStack(alloced_copy)); |
| 104 | } |
| 105 | |
| 106 | TEST(FixedArrayTest, MoveCtor) { |
| 107 | absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5); |
| 108 | for (int i = 0; i < 5; ++i) { |
| 109 | on_stack[i] = absl::make_unique<int>(i); |
| 110 | } |
| 111 | |
| 112 | absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack); |
| 113 | for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i); |
| 114 | EXPECT_EQ(stack_copy.size(), on_stack.size()); |
| 115 | |
| 116 | absl::FixedArray<std::unique_ptr<int>, 10> allocated(15); |
| 117 | for (int i = 0; i < 15; ++i) { |
| 118 | allocated[i] = absl::make_unique<int>(i); |
| 119 | } |
| 120 | |
| 121 | absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy = |
| 122 | std::move(allocated); |
| 123 | for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i); |
| 124 | EXPECT_EQ(allocated.size(), alloced_copy.size()); |
| 125 | } |
| 126 | |
| 127 | TEST(FixedArrayTest, SmallObjects) { |
| 128 | // Small object arrays |
| 129 | { |
| 130 | // Short arrays should be on the stack |
| 131 | absl::FixedArray<int> array(4); |
| 132 | EXPECT_TRUE(IsOnStack(array)); |
| 133 | } |
| 134 | |
| 135 | { |
| 136 | // Large arrays should be on the heap |
| 137 | absl::FixedArray<int> array(1048576); |
| 138 | EXPECT_FALSE(IsOnStack(array)); |
| 139 | } |
| 140 | |
| 141 | { |
| 142 | // Arrays of <= default size should be on the stack |
| 143 | absl::FixedArray<int, 100> array(100); |
| 144 | EXPECT_TRUE(IsOnStack(array)); |
| 145 | } |
| 146 | |
| 147 | { |
| 148 | // Arrays of > default size should be on the heap |
| 149 | absl::FixedArray<int, 100> array(101); |
| 150 | EXPECT_FALSE(IsOnStack(array)); |
| 151 | } |
| 152 | |
| 153 | { |
| 154 | // Arrays with different size elements should use approximately |
| 155 | // same amount of stack space |
| 156 | absl::FixedArray<int> array1(0); |
| 157 | absl::FixedArray<char> array2(0); |
| 158 | EXPECT_LE(sizeof(array1), sizeof(array2) + 100); |
| 159 | EXPECT_LE(sizeof(array2), sizeof(array1) + 100); |
| 160 | } |
| 161 | |
| 162 | { |
| 163 | // Ensure that vectors are properly constructed inside a fixed array. |
| 164 | absl::FixedArray<std::vector<int>> array(2); |
| 165 | EXPECT_EQ(0, array[0].size()); |
| 166 | EXPECT_EQ(0, array[1].size()); |
| 167 | } |
| 168 | |
| 169 | { |
| 170 | // Regardless of absl::FixedArray implementation, check that a type with a |
| 171 | // low alignment requirement and a non power-of-two size is initialized |
| 172 | // correctly. |
| 173 | ThreeInts::counter = 1; |
| 174 | absl::FixedArray<ThreeInts> array(2); |
| 175 | EXPECT_EQ(1, array[0].x_); |
| 176 | EXPECT_EQ(1, array[0].y_); |
| 177 | EXPECT_EQ(1, array[0].z_); |
| 178 | EXPECT_EQ(2, array[1].x_); |
| 179 | EXPECT_EQ(2, array[1].y_); |
| 180 | EXPECT_EQ(2, array[1].z_); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | TEST(FixedArrayTest, AtThrows) { |
| 185 | absl::FixedArray<int> a = {1, 2, 3}; |
| 186 | EXPECT_EQ(a.at(2), 3); |
| 187 | ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range, |
| 188 | "failed bounds check"); |
| 189 | } |
| 190 | |
| 191 | TEST(FixedArrayRelationalsTest, EqualArrays) { |
| 192 | for (int i = 0; i < 10; ++i) { |
| 193 | absl::FixedArray<int, 5> a1(i); |
| 194 | std::iota(a1.begin(), a1.end(), 0); |
| 195 | absl::FixedArray<int, 5> a2(a1.begin(), a1.end()); |
| 196 | |
| 197 | EXPECT_TRUE(a1 == a2); |
| 198 | EXPECT_FALSE(a1 != a2); |
| 199 | EXPECT_TRUE(a2 == a1); |
| 200 | EXPECT_FALSE(a2 != a1); |
| 201 | EXPECT_FALSE(a1 < a2); |
| 202 | EXPECT_FALSE(a1 > a2); |
| 203 | EXPECT_FALSE(a2 < a1); |
| 204 | EXPECT_FALSE(a2 > a1); |
| 205 | EXPECT_TRUE(a1 <= a2); |
| 206 | EXPECT_TRUE(a1 >= a2); |
| 207 | EXPECT_TRUE(a2 <= a1); |
| 208 | EXPECT_TRUE(a2 >= a1); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | TEST(FixedArrayRelationalsTest, UnequalArrays) { |
| 213 | for (int i = 1; i < 10; ++i) { |
| 214 | absl::FixedArray<int, 5> a1(i); |
| 215 | std::iota(a1.begin(), a1.end(), 0); |
| 216 | absl::FixedArray<int, 5> a2(a1.begin(), a1.end()); |
| 217 | --a2[i / 2]; |
| 218 | |
| 219 | EXPECT_FALSE(a1 == a2); |
| 220 | EXPECT_TRUE(a1 != a2); |
| 221 | EXPECT_FALSE(a2 == a1); |
| 222 | EXPECT_TRUE(a2 != a1); |
| 223 | EXPECT_FALSE(a1 < a2); |
| 224 | EXPECT_TRUE(a1 > a2); |
| 225 | EXPECT_TRUE(a2 < a1); |
| 226 | EXPECT_FALSE(a2 > a1); |
| 227 | EXPECT_FALSE(a1 <= a2); |
| 228 | EXPECT_TRUE(a1 >= a2); |
| 229 | EXPECT_TRUE(a2 <= a1); |
| 230 | EXPECT_FALSE(a2 >= a1); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | template <int stack_elements> |
| 235 | static void TestArray(int n) { |
| 236 | SCOPED_TRACE(n); |
| 237 | SCOPED_TRACE(stack_elements); |
| 238 | ConstructionTester::constructions = 0; |
| 239 | ConstructionTester::destructions = 0; |
| 240 | { |
| 241 | absl::FixedArray<ConstructionTester, stack_elements> array(n); |
| 242 | |
| 243 | EXPECT_THAT(array.size(), n); |
| 244 | EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n); |
| 245 | EXPECT_THAT(array.begin() + n, array.end()); |
| 246 | |
| 247 | // Check that all elements were constructed |
| 248 | for (int i = 0; i < n; i++) { |
| 249 | array[i].CheckConstructed(); |
| 250 | } |
| 251 | // Check that no other elements were constructed |
| 252 | EXPECT_THAT(ConstructionTester::constructions, n); |
| 253 | |
| 254 | // Test operator[] |
| 255 | for (int i = 0; i < n; i++) { |
| 256 | array[i].set(i); |
| 257 | } |
| 258 | for (int i = 0; i < n; i++) { |
| 259 | EXPECT_THAT(array[i].get(), i); |
| 260 | EXPECT_THAT(array.data()[i].get(), i); |
| 261 | } |
| 262 | |
| 263 | // Test data() |
| 264 | for (int i = 0; i < n; i++) { |
| 265 | array.data()[i].set(i + 1); |
| 266 | } |
| 267 | for (int i = 0; i < n; i++) { |
| 268 | EXPECT_THAT(array[i].get(), i + 1); |
| 269 | EXPECT_THAT(array.data()[i].get(), i + 1); |
| 270 | } |
| 271 | } // Close scope containing 'array'. |
| 272 | |
| 273 | // Check that all constructed elements were destructed. |
| 274 | EXPECT_EQ(ConstructionTester::constructions, |
| 275 | ConstructionTester::destructions); |
| 276 | } |
| 277 | |
| 278 | template <int elements_per_inner_array, int inline_elements> |
| 279 | static void TestArrayOfArrays(int n) { |
| 280 | SCOPED_TRACE(n); |
| 281 | SCOPED_TRACE(inline_elements); |
| 282 | SCOPED_TRACE(elements_per_inner_array); |
| 283 | ConstructionTester::constructions = 0; |
| 284 | ConstructionTester::destructions = 0; |
| 285 | { |
| 286 | using InnerArray = ConstructionTester[elements_per_inner_array]; |
| 287 | // Heap-allocate the FixedArray to avoid blowing the stack frame. |
| 288 | auto array_ptr = |
| 289 | absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n); |
| 290 | auto& array = *array_ptr; |
| 291 | |
| 292 | ASSERT_EQ(array.size(), n); |
| 293 | ASSERT_EQ(array.memsize(), |
| 294 | sizeof(ConstructionTester) * elements_per_inner_array * n); |
| 295 | ASSERT_EQ(array.begin() + n, array.end()); |
| 296 | |
| 297 | // Check that all elements were constructed |
| 298 | for (int i = 0; i < n; i++) { |
| 299 | for (int j = 0; j < elements_per_inner_array; j++) { |
| 300 | (array[i])[j].CheckConstructed(); |
| 301 | } |
| 302 | } |
| 303 | // Check that no other elements were constructed |
| 304 | ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array); |
| 305 | |
| 306 | // Test operator[] |
| 307 | for (int i = 0; i < n; i++) { |
| 308 | for (int j = 0; j < elements_per_inner_array; j++) { |
| 309 | (array[i])[j].set(i * elements_per_inner_array + j); |
| 310 | } |
| 311 | } |
| 312 | for (int i = 0; i < n; i++) { |
| 313 | for (int j = 0; j < elements_per_inner_array; j++) { |
| 314 | ASSERT_EQ((array[i])[j].get(), i * elements_per_inner_array + j); |
| 315 | ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j); |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | // Test data() |
| 320 | for (int i = 0; i < n; i++) { |
| 321 | for (int j = 0; j < elements_per_inner_array; j++) { |
| 322 | (array.data()[i])[j].set((i + 1) * elements_per_inner_array + j); |
| 323 | } |
| 324 | } |
| 325 | for (int i = 0; i < n; i++) { |
| 326 | for (int j = 0; j < elements_per_inner_array; j++) { |
| 327 | ASSERT_EQ((array[i])[j].get(), (i + 1) * elements_per_inner_array + j); |
| 328 | ASSERT_EQ((array.data()[i])[j].get(), |
| 329 | (i + 1) * elements_per_inner_array + j); |
| 330 | } |
| 331 | } |
| 332 | } // Close scope containing 'array'. |
| 333 | |
| 334 | // Check that all constructed elements were destructed. |
| 335 | EXPECT_EQ(ConstructionTester::constructions, |
| 336 | ConstructionTester::destructions); |
| 337 | } |
| 338 | |
| 339 | TEST(IteratorConstructorTest, NonInline) { |
| 340 | int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; |
| 341 | absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed( |
| 342 | kInput, kInput + ABSL_ARRAYSIZE(kInput)); |
| 343 | ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); |
| 344 | for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { |
| 345 | ASSERT_EQ(kInput[i], fixed[i]); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | TEST(IteratorConstructorTest, Inline) { |
| 350 | int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; |
| 351 | absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed( |
| 352 | kInput, kInput + ABSL_ARRAYSIZE(kInput)); |
| 353 | ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); |
| 354 | for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { |
| 355 | ASSERT_EQ(kInput[i], fixed[i]); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | TEST(IteratorConstructorTest, NonPod) { |
| 360 | char const* kInput[] = {"red", "orange", "yellow", "green", |
| 361 | "blue", "indigo", "violet"}; |
| 362 | absl::FixedArray<std::string> const fixed(kInput, |
| 363 | kInput + ABSL_ARRAYSIZE(kInput)); |
| 364 | ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); |
| 365 | for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { |
| 366 | ASSERT_EQ(kInput[i], fixed[i]); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | TEST(IteratorConstructorTest, FromEmptyVector) { |
| 371 | std::vector<int> const empty; |
| 372 | absl::FixedArray<int> const fixed(empty.begin(), empty.end()); |
| 373 | EXPECT_EQ(0, fixed.size()); |
| 374 | EXPECT_EQ(empty.size(), fixed.size()); |
| 375 | } |
| 376 | |
| 377 | TEST(IteratorConstructorTest, FromNonEmptyVector) { |
| 378 | int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; |
| 379 | std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput)); |
| 380 | absl::FixedArray<int> const fixed(items.begin(), items.end()); |
| 381 | ASSERT_EQ(items.size(), fixed.size()); |
| 382 | for (size_t i = 0; i < items.size(); ++i) { |
| 383 | ASSERT_EQ(items[i], fixed[i]); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) { |
| 388 | int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; |
| 389 | std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput)); |
| 390 | absl::FixedArray<int> const fixed(items.begin(), items.end()); |
| 391 | EXPECT_THAT(fixed, testing::ElementsAreArray(kInput)); |
| 392 | } |
| 393 | |
| 394 | TEST(InitListConstructorTest, InitListConstruction) { |
| 395 | absl::FixedArray<int> fixed = {1, 2, 3}; |
| 396 | EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3})); |
| 397 | } |
| 398 | |
| 399 | TEST(FillConstructorTest, NonEmptyArrays) { |
| 400 | absl::FixedArray<int> stack_array(4, 1); |
| 401 | EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1})); |
| 402 | |
| 403 | absl::FixedArray<int, 0> heap_array(4, 1); |
| 404 | EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1})); |
| 405 | } |
| 406 | |
| 407 | TEST(FillConstructorTest, EmptyArray) { |
| 408 | absl::FixedArray<int> empty_fill(0, 1); |
| 409 | absl::FixedArray<int> empty_size(0); |
| 410 | EXPECT_EQ(empty_fill, empty_size); |
| 411 | } |
| 412 | |
| 413 | TEST(FillConstructorTest, NotTriviallyCopyable) { |
| 414 | std::string str = "abcd"; |
| 415 | absl::FixedArray<std::string> strings = {str, str, str, str}; |
| 416 | |
| 417 | absl::FixedArray<std::string> array(4, str); |
| 418 | EXPECT_EQ(array, strings); |
| 419 | } |
| 420 | |
| 421 | TEST(FillConstructorTest, Disambiguation) { |
| 422 | absl::FixedArray<size_t> a(1, 2); |
| 423 | EXPECT_THAT(a, testing::ElementsAre(2)); |
| 424 | } |
| 425 | |
| 426 | TEST(FixedArrayTest, ManySizedArrays) { |
| 427 | std::vector<int> sizes; |
| 428 | for (int i = 1; i < 100; i++) sizes.push_back(i); |
| 429 | for (int i = 100; i <= 1000; i += 100) sizes.push_back(i); |
| 430 | for (int n : sizes) { |
| 431 | TestArray<0>(n); |
| 432 | TestArray<1>(n); |
| 433 | TestArray<64>(n); |
| 434 | TestArray<1000>(n); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) { |
| 439 | for (int n = 1; n < 1000; n++) { |
| 440 | ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n))); |
| 441 | ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n))); |
| 442 | ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n))); |
| 443 | ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n))); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) { |
| 448 | for (int n = 1; n < 1000; n++) { |
| 449 | TestArrayOfArrays<2, 0>(n); |
| 450 | TestArrayOfArrays<2, 1>(n); |
| 451 | TestArrayOfArrays<2, 64>(n); |
| 452 | TestArrayOfArrays<2, 1000>(n); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // If value_type is put inside of a struct container, |
| 457 | // we might evoke this error in a hardened build unless data() is carefully |
| 458 | // written, so check on that. |
| 459 | // error: call to int __builtin___sprintf_chk(etc...) |
| 460 | // will always overflow destination buffer [-Werror] |
| 461 | TEST(FixedArrayTest, AvoidParanoidDiagnostics) { |
| 462 | absl::FixedArray<char, 32> buf(32); |
| 463 | sprintf(buf.data(), "foo"); // NOLINT(runtime/printf) |
| 464 | } |
| 465 | |
| 466 | TEST(FixedArrayTest, TooBigInlinedSpace) { |
| 467 | struct TooBig { |
| 468 | char c[1 << 20]; |
| 469 | }; // too big for even one on the stack |
| 470 | |
| 471 | // Simulate the data members of absl::FixedArray, a pointer and a size_t. |
| 472 | struct Data { |
| 473 | TooBig* p; |
| 474 | size_t size; |
| 475 | }; |
| 476 | |
| 477 | // Make sure TooBig objects are not inlined for 0 or default size. |
| 478 | static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data), |
| 479 | "0-sized absl::FixedArray should have same size as Data."); |
| 480 | static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data), |
| 481 | "0-sized absl::FixedArray should have same alignment as Data."); |
| 482 | static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data), |
| 483 | "default-sized absl::FixedArray should have same size as Data"); |
| 484 | static_assert( |
| 485 | alignof(absl::FixedArray<TooBig>) == alignof(Data), |
| 486 | "default-sized absl::FixedArray should have same alignment as Data."); |
| 487 | } |
| 488 | |
| 489 | // PickyDelete EXPECTs its class-scope deallocation funcs are unused. |
| 490 | struct PickyDelete { |
| 491 | PickyDelete() {} |
| 492 | ~PickyDelete() {} |
| 493 | void operator delete(void* p) { |
| 494 | EXPECT_TRUE(false) << __FUNCTION__; |
| 495 | ::operator delete(p); |
| 496 | } |
| 497 | void operator delete[](void* p) { |
| 498 | EXPECT_TRUE(false) << __FUNCTION__; |
| 499 | ::operator delete[](p); |
| 500 | } |
| 501 | }; |
| 502 | |
| 503 | TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); } |
| 504 | |
| 505 | TEST(FixedArrayTest, Data) { |
| 506 | static const int kInput[] = {2, 3, 5, 7, 11, 13, 17}; |
| 507 | absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput)); |
| 508 | EXPECT_EQ(fa.data(), &*fa.begin()); |
| 509 | EXPECT_EQ(fa.data(), &fa[0]); |
| 510 | |
| 511 | const absl::FixedArray<int>& cfa = fa; |
| 512 | EXPECT_EQ(cfa.data(), &*cfa.begin()); |
| 513 | EXPECT_EQ(cfa.data(), &cfa[0]); |
| 514 | } |
| 515 | |
| 516 | TEST(FixedArrayTest, Empty) { |
| 517 | absl::FixedArray<int> empty(0); |
| 518 | absl::FixedArray<int> inline_filled(1); |
| 519 | absl::FixedArray<int, 0> heap_filled(1); |
| 520 | EXPECT_TRUE(empty.empty()); |
| 521 | EXPECT_FALSE(inline_filled.empty()); |
| 522 | EXPECT_FALSE(heap_filled.empty()); |
| 523 | } |
| 524 | |
| 525 | TEST(FixedArrayTest, FrontAndBack) { |
| 526 | absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3}; |
| 527 | EXPECT_EQ(inlined.front(), 1); |
| 528 | EXPECT_EQ(inlined.back(), 3); |
| 529 | |
| 530 | absl::FixedArray<int, 0> allocated = {1, 2, 3}; |
| 531 | EXPECT_EQ(allocated.front(), 1); |
| 532 | EXPECT_EQ(allocated.back(), 3); |
| 533 | |
| 534 | absl::FixedArray<int> one_element = {1}; |
| 535 | EXPECT_EQ(one_element.front(), one_element.back()); |
| 536 | } |
| 537 | |
| 538 | TEST(FixedArrayTest, ReverseIteratorInlined) { |
| 539 | absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4}; |
| 540 | |
| 541 | int counter = 5; |
| 542 | for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin(); |
| 543 | iter != a.rend(); ++iter) { |
| 544 | counter--; |
| 545 | EXPECT_EQ(counter, *iter); |
| 546 | } |
| 547 | EXPECT_EQ(counter, 0); |
| 548 | |
| 549 | counter = 5; |
| 550 | for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin(); |
| 551 | iter != a.rend(); ++iter) { |
| 552 | counter--; |
| 553 | EXPECT_EQ(counter, *iter); |
| 554 | } |
| 555 | EXPECT_EQ(counter, 0); |
| 556 | |
| 557 | counter = 5; |
| 558 | for (auto iter = a.crbegin(); iter != a.crend(); ++iter) { |
| 559 | counter--; |
| 560 | EXPECT_EQ(counter, *iter); |
| 561 | } |
| 562 | EXPECT_EQ(counter, 0); |
| 563 | } |
| 564 | |
| 565 | TEST(FixedArrayTest, ReverseIteratorAllocated) { |
| 566 | absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4}; |
| 567 | |
| 568 | int counter = 5; |
| 569 | for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin(); |
| 570 | iter != a.rend(); ++iter) { |
| 571 | counter--; |
| 572 | EXPECT_EQ(counter, *iter); |
| 573 | } |
| 574 | EXPECT_EQ(counter, 0); |
| 575 | |
| 576 | counter = 5; |
| 577 | for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin(); |
| 578 | iter != a.rend(); ++iter) { |
| 579 | counter--; |
| 580 | EXPECT_EQ(counter, *iter); |
| 581 | } |
| 582 | EXPECT_EQ(counter, 0); |
| 583 | |
| 584 | counter = 5; |
| 585 | for (auto iter = a.crbegin(); iter != a.crend(); ++iter) { |
| 586 | counter--; |
| 587 | EXPECT_EQ(counter, *iter); |
| 588 | } |
| 589 | EXPECT_EQ(counter, 0); |
| 590 | } |
| 591 | |
| 592 | TEST(FixedArrayTest, Fill) { |
| 593 | absl::FixedArray<int, 5 * sizeof(int)> inlined(5); |
| 594 | int fill_val = 42; |
| 595 | inlined.fill(fill_val); |
| 596 | for (int i : inlined) EXPECT_EQ(i, fill_val); |
| 597 | |
| 598 | absl::FixedArray<int, 0> allocated(5); |
| 599 | allocated.fill(fill_val); |
| 600 | for (int i : allocated) EXPECT_EQ(i, fill_val); |
| 601 | |
| 602 | // It doesn't do anything, just make sure this compiles. |
| 603 | absl::FixedArray<int> empty(0); |
| 604 | empty.fill(fill_val); |
| 605 | } |
| 606 | |
| 607 | // TODO(johnsoncj): Investigate InlinedStorage default initialization in GCC 4.x |
| 608 | #ifndef __GNUC__ |
| 609 | TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) { |
| 610 | using T = char; |
| 611 | constexpr auto capacity = 10; |
| 612 | using FixedArrType = absl::FixedArray<T, capacity>; |
| 613 | using FixedArrBuffType = |
| 614 | absl::aligned_storage_t<sizeof(FixedArrType), alignof(FixedArrType)>; |
| 615 | constexpr auto scrubbed_bits = 0x95; |
| 616 | constexpr auto length = capacity / 2; |
| 617 | |
| 618 | FixedArrBuffType buff; |
| 619 | std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrBuffType)); |
| 620 | |
| 621 | FixedArrType* arr = |
| 622 | ::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length); |
| 623 | EXPECT_THAT(*arr, testing::Each(scrubbed_bits)); |
| 624 | arr->~FixedArrType(); |
| 625 | } |
| 626 | #endif // __GNUC__ |
| 627 | |
| 628 | // This is a stateful allocator, but the state lives outside of the |
| 629 | // allocator (in whatever test is using the allocator). This is odd |
| 630 | // but helps in tests where the allocator is propagated into nested |
| 631 | // containers - that chain of allocators uses the same state and is |
| 632 | // thus easier to query for aggregate allocation information. |
| 633 | template <typename T> |
| 634 | class CountingAllocator : public std::allocator<T> { |
| 635 | public: |
| 636 | using Alloc = std::allocator<T>; |
| 637 | using pointer = typename Alloc::pointer; |
| 638 | using size_type = typename Alloc::size_type; |
| 639 | |
| 640 | CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {} |
| 641 | explicit CountingAllocator(int64_t* b) |
| 642 | : bytes_used_(b), instance_count_(nullptr) {} |
| 643 | CountingAllocator(int64_t* b, int64_t* a) |
| 644 | : bytes_used_(b), instance_count_(a) {} |
| 645 | |
| 646 | template <typename U> |
| 647 | explicit CountingAllocator(const CountingAllocator<U>& x) |
| 648 | : Alloc(x), |
| 649 | bytes_used_(x.bytes_used_), |
| 650 | instance_count_(x.instance_count_) {} |
| 651 | |
| 652 | pointer allocate(size_type n, const void* const hint = nullptr) { |
| 653 | assert(bytes_used_ != nullptr); |
| 654 | *bytes_used_ += n * sizeof(T); |
| 655 | return Alloc::allocate(n, hint); |
| 656 | } |
| 657 | |
| 658 | void deallocate(pointer p, size_type n) { |
| 659 | Alloc::deallocate(p, n); |
| 660 | assert(bytes_used_ != nullptr); |
| 661 | *bytes_used_ -= n * sizeof(T); |
| 662 | } |
| 663 | |
| 664 | template <typename... Args> |
| 665 | void construct(pointer p, Args&&... args) { |
| 666 | Alloc::construct(p, absl::forward<Args>(args)...); |
| 667 | if (instance_count_) { |
| 668 | *instance_count_ += 1; |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | void destroy(pointer p) { |
| 673 | Alloc::destroy(p); |
| 674 | if (instance_count_) { |
| 675 | *instance_count_ -= 1; |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | template <typename U> |
| 680 | class rebind { |
| 681 | public: |
| 682 | using other = CountingAllocator<U>; |
| 683 | }; |
| 684 | |
| 685 | int64_t* bytes_used_; |
| 686 | int64_t* instance_count_; |
| 687 | }; |
| 688 | |
| 689 | TEST(AllocatorSupportTest, CountInlineAllocations) { |
| 690 | constexpr size_t inlined_size = 4; |
| 691 | using Alloc = CountingAllocator<int>; |
| 692 | using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; |
| 693 | |
| 694 | int64_t allocated = 0; |
| 695 | int64_t active_instances = 0; |
| 696 | |
| 697 | { |
| 698 | const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| 699 | |
| 700 | Alloc alloc(&allocated, &active_instances); |
| 701 | |
| 702 | AllocFxdArr arr(ia, ia + inlined_size, alloc); |
| 703 | static_cast<void>(arr); |
| 704 | } |
| 705 | |
| 706 | EXPECT_EQ(allocated, 0); |
| 707 | EXPECT_EQ(active_instances, 0); |
| 708 | } |
| 709 | |
| 710 | TEST(AllocatorSupportTest, CountOutoflineAllocations) { |
| 711 | constexpr size_t inlined_size = 4; |
| 712 | using Alloc = CountingAllocator<int>; |
| 713 | using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; |
| 714 | |
| 715 | int64_t allocated = 0; |
| 716 | int64_t active_instances = 0; |
| 717 | |
| 718 | { |
| 719 | const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| 720 | Alloc alloc(&allocated, &active_instances); |
| 721 | |
| 722 | AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc); |
| 723 | |
| 724 | EXPECT_EQ(allocated, arr.size() * sizeof(int)); |
| 725 | static_cast<void>(arr); |
| 726 | } |
| 727 | |
| 728 | EXPECT_EQ(active_instances, 0); |
| 729 | } |
| 730 | |
| 731 | TEST(AllocatorSupportTest, CountCopyInlineAllocations) { |
| 732 | constexpr size_t inlined_size = 4; |
| 733 | using Alloc = CountingAllocator<int>; |
| 734 | using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; |
| 735 | |
| 736 | int64_t allocated1 = 0; |
| 737 | int64_t allocated2 = 0; |
| 738 | int64_t active_instances = 0; |
| 739 | Alloc alloc(&allocated1, &active_instances); |
| 740 | Alloc alloc2(&allocated2, &active_instances); |
| 741 | |
| 742 | { |
| 743 | int initial_value = 1; |
| 744 | |
| 745 | AllocFxdArr arr1(inlined_size / 2, initial_value, alloc); |
| 746 | |
| 747 | EXPECT_EQ(allocated1, 0); |
| 748 | |
| 749 | AllocFxdArr arr2(arr1, alloc2); |
| 750 | |
| 751 | EXPECT_EQ(allocated2, 0); |
| 752 | static_cast<void>(arr1); |
| 753 | static_cast<void>(arr2); |
| 754 | } |
| 755 | |
| 756 | EXPECT_EQ(active_instances, 0); |
| 757 | } |
| 758 | |
| 759 | TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) { |
| 760 | constexpr size_t inlined_size = 4; |
| 761 | using Alloc = CountingAllocator<int>; |
| 762 | using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; |
| 763 | |
| 764 | int64_t allocated1 = 0; |
| 765 | int64_t allocated2 = 0; |
| 766 | int64_t active_instances = 0; |
| 767 | Alloc alloc(&allocated1, &active_instances); |
| 768 | Alloc alloc2(&allocated2, &active_instances); |
| 769 | |
| 770 | { |
| 771 | int initial_value = 1; |
| 772 | |
| 773 | AllocFxdArr arr1(inlined_size * 2, initial_value, alloc); |
| 774 | |
| 775 | EXPECT_EQ(allocated1, arr1.size() * sizeof(int)); |
| 776 | |
| 777 | AllocFxdArr arr2(arr1, alloc2); |
| 778 | |
| 779 | EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int)); |
| 780 | static_cast<void>(arr1); |
| 781 | static_cast<void>(arr2); |
| 782 | } |
| 783 | |
| 784 | EXPECT_EQ(active_instances, 0); |
| 785 | } |
| 786 | |
| 787 | TEST(AllocatorSupportTest, SizeValAllocConstructor) { |
| 788 | using testing::AllOf; |
| 789 | using testing::Each; |
| 790 | using testing::SizeIs; |
| 791 | |
| 792 | constexpr size_t inlined_size = 4; |
| 793 | using Alloc = CountingAllocator<int>; |
| 794 | using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; |
| 795 | |
| 796 | { |
| 797 | auto len = inlined_size / 2; |
| 798 | auto val = 0; |
| 799 | int64_t allocated = 0; |
| 800 | AllocFxdArr arr(len, val, Alloc(&allocated)); |
| 801 | |
| 802 | EXPECT_EQ(allocated, 0); |
| 803 | EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0))); |
| 804 | } |
| 805 | |
| 806 | { |
| 807 | auto len = inlined_size * 2; |
| 808 | auto val = 0; |
| 809 | int64_t allocated = 0; |
| 810 | AllocFxdArr arr(len, val, Alloc(&allocated)); |
| 811 | |
| 812 | EXPECT_EQ(allocated, len * sizeof(int)); |
| 813 | EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0))); |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | #ifdef ADDRESS_SANITIZER |
| 818 | TEST(FixedArrayTest, AddressSanitizerAnnotations1) { |
| 819 | absl::FixedArray<int, 32> a(10); |
| 820 | int* raw = a.data(); |
| 821 | raw[0] = 0; |
| 822 | raw[9] = 0; |
| 823 | EXPECT_DEATH(raw[-2] = 0, "container-overflow"); |
| 824 | EXPECT_DEATH(raw[-1] = 0, "container-overflow"); |
| 825 | EXPECT_DEATH(raw[10] = 0, "container-overflow"); |
| 826 | EXPECT_DEATH(raw[31] = 0, "container-overflow"); |
| 827 | } |
| 828 | |
| 829 | TEST(FixedArrayTest, AddressSanitizerAnnotations2) { |
| 830 | absl::FixedArray<char, 17> a(12); |
| 831 | char* raw = a.data(); |
| 832 | raw[0] = 0; |
| 833 | raw[11] = 0; |
| 834 | EXPECT_DEATH(raw[-7] = 0, "container-overflow"); |
| 835 | EXPECT_DEATH(raw[-1] = 0, "container-overflow"); |
| 836 | EXPECT_DEATH(raw[12] = 0, "container-overflow"); |
| 837 | EXPECT_DEATH(raw[17] = 0, "container-overflow"); |
| 838 | } |
| 839 | |
| 840 | TEST(FixedArrayTest, AddressSanitizerAnnotations3) { |
| 841 | absl::FixedArray<uint64_t, 20> a(20); |
| 842 | uint64_t* raw = a.data(); |
| 843 | raw[0] = 0; |
| 844 | raw[19] = 0; |
| 845 | EXPECT_DEATH(raw[-1] = 0, "container-overflow"); |
| 846 | EXPECT_DEATH(raw[20] = 0, "container-overflow"); |
| 847 | } |
| 848 | |
| 849 | TEST(FixedArrayTest, AddressSanitizerAnnotations4) { |
| 850 | absl::FixedArray<ThreeInts> a(10); |
| 851 | ThreeInts* raw = a.data(); |
| 852 | raw[0] = ThreeInts(); |
| 853 | raw[9] = ThreeInts(); |
| 854 | // Note: raw[-1] is pointing to 12 bytes before the container range. However, |
| 855 | // there is only a 8-byte red zone before the container range, so we only |
| 856 | // access the last 4 bytes of the struct to make sure it stays within the red |
| 857 | // zone. |
| 858 | EXPECT_DEATH(raw[-1].z_ = 0, "container-overflow"); |
| 859 | EXPECT_DEATH(raw[10] = ThreeInts(), "container-overflow"); |
| 860 | // The actual size of storage is kDefaultBytes=256, 21*12 = 252, |
| 861 | // so reading raw[21] should still trigger the correct warning. |
| 862 | EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow"); |
| 863 | } |
| 864 | #endif // ADDRESS_SANITIZER |
| 865 | |
| 866 | TEST(FixedArrayTest, AbslHashValueWorks) { |
| 867 | using V = absl::FixedArray<int>; |
| 868 | std::vector<V> cases; |
| 869 | |
| 870 | // Generate a variety of vectors some of these are small enough for the inline |
| 871 | // space but are stored out of line. |
| 872 | for (int i = 0; i < 10; ++i) { |
| 873 | V v(i); |
| 874 | for (int j = 0; j < i; ++j) { |
| 875 | v[j] = j; |
| 876 | } |
| 877 | cases.push_back(v); |
| 878 | } |
| 879 | |
| 880 | EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases)); |
| 881 | } |
| 882 | |
| 883 | } // namespace |