Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2018 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | // |
| 15 | // ----------------------------------------------------------------------------- |
| 16 | // File: fixed_array.h |
| 17 | // ----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // A `FixedArray<T>` represents a non-resizable array of `T` where the length of |
| 20 | // the array can be determined at run-time. It is a good replacement for |
| 21 | // non-standard and deprecated uses of `alloca()` and variable length arrays |
| 22 | // within the GCC extension. (See |
| 23 | // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). |
| 24 | // |
| 25 | // `FixedArray` allocates small arrays inline, keeping performance fast by |
| 26 | // avoiding heap operations. It also helps reduce the chances of |
| 27 | // accidentally overflowing your stack if large input is passed to |
| 28 | // your function. |
| 29 | |
| 30 | #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ |
| 31 | #define ABSL_CONTAINER_FIXED_ARRAY_H_ |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cassert> |
| 35 | #include <cstddef> |
| 36 | #include <initializer_list> |
| 37 | #include <iterator> |
| 38 | #include <limits> |
| 39 | #include <memory> |
| 40 | #include <new> |
| 41 | #include <type_traits> |
| 42 | |
| 43 | #include "absl/algorithm/algorithm.h" |
| 44 | #include "absl/base/dynamic_annotations.h" |
| 45 | #include "absl/base/internal/throw_delegate.h" |
| 46 | #include "absl/base/macros.h" |
| 47 | #include "absl/base/optimization.h" |
| 48 | #include "absl/base/port.h" |
| 49 | #include "absl/container/internal/compressed_tuple.h" |
| 50 | #include "absl/memory/memory.h" |
| 51 | |
| 52 | namespace absl { |
| 53 | |
| 54 | constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); |
| 55 | |
| 56 | // ----------------------------------------------------------------------------- |
| 57 | // FixedArray |
| 58 | // ----------------------------------------------------------------------------- |
| 59 | // |
| 60 | // A `FixedArray` provides a run-time fixed-size array, allocating a small array |
| 61 | // inline for efficiency. |
| 62 | // |
| 63 | // Most users should not specify an `inline_elements` argument and let |
| 64 | // `FixedArray` automatically determine the number of elements |
| 65 | // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the |
| 66 | // `FixedArray` implementation will use inline storage for arrays with a |
| 67 | // length <= `inline_elements`. |
| 68 | // |
| 69 | // Note that a `FixedArray` constructed with a `size_type` argument will |
| 70 | // default-initialize its values by leaving trivially constructible types |
| 71 | // uninitialized (e.g. int, int[4], double), and others default-constructed. |
| 72 | // This matches the behavior of c-style arrays and `std::array`, but not |
| 73 | // `std::vector`. |
| 74 | // |
| 75 | // Note that `FixedArray` does not provide a public allocator; if it requires a |
| 76 | // heap allocation, it will do so with global `::operator new[]()` and |
| 77 | // `::operator delete[]()`, even if T provides class-scope overrides for these |
| 78 | // operators. |
| 79 | template <typename T, size_t N = kFixedArrayUseDefault, |
| 80 | typename A = std::allocator<T>> |
| 81 | class FixedArray { |
| 82 | static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, |
| 83 | "Arrays with unknown bounds cannot be used with FixedArray."); |
| 84 | |
| 85 | static constexpr size_t kInlineBytesDefault = 256; |
| 86 | |
| 87 | using AllocatorTraits = std::allocator_traits<A>; |
| 88 | // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, |
| 89 | // but this seems to be mostly pedantic. |
| 90 | template <typename Iterator> |
| 91 | using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible< |
| 92 | typename std::iterator_traits<Iterator>::iterator_category, |
| 93 | std::forward_iterator_tag>::value>; |
| 94 | static constexpr bool NoexceptCopyable() { |
| 95 | return std::is_nothrow_copy_constructible<StorageElement>::value && |
| 96 | absl::allocator_is_nothrow<allocator_type>::value; |
| 97 | } |
| 98 | static constexpr bool NoexceptMovable() { |
| 99 | return std::is_nothrow_move_constructible<StorageElement>::value && |
| 100 | absl::allocator_is_nothrow<allocator_type>::value; |
| 101 | } |
| 102 | static constexpr bool DefaultConstructorIsNonTrivial() { |
| 103 | return !absl::is_trivially_default_constructible<StorageElement>::value; |
| 104 | } |
| 105 | |
| 106 | public: |
| 107 | using allocator_type = typename AllocatorTraits::allocator_type; |
| 108 | using value_type = typename allocator_type::value_type; |
| 109 | using pointer = typename allocator_type::pointer; |
| 110 | using const_pointer = typename allocator_type::const_pointer; |
| 111 | using reference = typename allocator_type::reference; |
| 112 | using const_reference = typename allocator_type::const_reference; |
| 113 | using size_type = typename allocator_type::size_type; |
| 114 | using difference_type = typename allocator_type::difference_type; |
| 115 | using iterator = pointer; |
| 116 | using const_iterator = const_pointer; |
| 117 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 118 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 119 | |
| 120 | static constexpr size_type inline_elements = |
| 121 | (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) |
| 122 | : static_cast<size_type>(N)); |
| 123 | |
| 124 | FixedArray( |
| 125 | const FixedArray& other, |
| 126 | const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable()) |
| 127 | : FixedArray(other.begin(), other.end(), a) {} |
| 128 | |
| 129 | FixedArray( |
| 130 | FixedArray&& other, |
| 131 | const allocator_type& a = allocator_type()) noexcept(NoexceptMovable()) |
| 132 | : FixedArray(std::make_move_iterator(other.begin()), |
| 133 | std::make_move_iterator(other.end()), a) {} |
| 134 | |
| 135 | // Creates an array object that can store `n` elements. |
| 136 | // Note that trivially constructible elements will be uninitialized. |
| 137 | explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) |
| 138 | : storage_(n, a) { |
| 139 | if (DefaultConstructorIsNonTrivial()) { |
| 140 | memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
| 141 | storage_.end()); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | // Creates an array initialized with `n` copies of `val`. |
| 146 | FixedArray(size_type n, const value_type& val, |
| 147 | const allocator_type& a = allocator_type()) |
| 148 | : storage_(n, a) { |
| 149 | memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
| 150 | storage_.end(), val); |
| 151 | } |
| 152 | |
| 153 | // Creates an array initialized with the size and contents of `init_list`. |
| 154 | FixedArray(std::initializer_list<value_type> init_list, |
| 155 | const allocator_type& a = allocator_type()) |
| 156 | : FixedArray(init_list.begin(), init_list.end(), a) {} |
| 157 | |
| 158 | // Creates an array initialized with the elements from the input |
| 159 | // range. The array's size will always be `std::distance(first, last)`. |
| 160 | // REQUIRES: Iterator must be a forward_iterator or better. |
| 161 | template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> |
| 162 | FixedArray(Iterator first, Iterator last, |
| 163 | const allocator_type& a = allocator_type()) |
| 164 | : storage_(std::distance(first, last), a) { |
| 165 | memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last); |
| 166 | } |
| 167 | |
| 168 | ~FixedArray() noexcept { |
| 169 | for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { |
| 170 | AllocatorTraits::destroy(storage_.alloc(), cur); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // Assignments are deleted because they break the invariant that the size of a |
| 175 | // `FixedArray` never changes. |
| 176 | void operator=(FixedArray&&) = delete; |
| 177 | void operator=(const FixedArray&) = delete; |
| 178 | |
| 179 | // FixedArray::size() |
| 180 | // |
| 181 | // Returns the length of the fixed array. |
| 182 | size_type size() const { return storage_.size(); } |
| 183 | |
| 184 | // FixedArray::max_size() |
| 185 | // |
| 186 | // Returns the largest possible value of `std::distance(begin(), end())` for a |
| 187 | // `FixedArray<T>`. This is equivalent to the most possible addressable bytes |
| 188 | // over the number of bytes taken by T. |
| 189 | constexpr size_type max_size() const { |
| 190 | return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); |
| 191 | } |
| 192 | |
| 193 | // FixedArray::empty() |
| 194 | // |
| 195 | // Returns whether or not the fixed array is empty. |
| 196 | bool empty() const { return size() == 0; } |
| 197 | |
| 198 | // FixedArray::memsize() |
| 199 | // |
| 200 | // Returns the memory size of the fixed array in bytes. |
| 201 | size_t memsize() const { return size() * sizeof(value_type); } |
| 202 | |
| 203 | // FixedArray::data() |
| 204 | // |
| 205 | // Returns a const T* pointer to elements of the `FixedArray`. This pointer |
| 206 | // can be used to access (but not modify) the contained elements. |
| 207 | const_pointer data() const { return AsValueType(storage_.begin()); } |
| 208 | |
| 209 | // Overload of FixedArray::data() to return a T* pointer to elements of the |
| 210 | // fixed array. This pointer can be used to access and modify the contained |
| 211 | // elements. |
| 212 | pointer data() { return AsValueType(storage_.begin()); } |
| 213 | |
| 214 | // FixedArray::operator[] |
| 215 | // |
| 216 | // Returns a reference the ith element of the fixed array. |
| 217 | // REQUIRES: 0 <= i < size() |
| 218 | reference operator[](size_type i) { |
| 219 | assert(i < size()); |
| 220 | return data()[i]; |
| 221 | } |
| 222 | |
| 223 | // Overload of FixedArray::operator()[] to return a const reference to the |
| 224 | // ith element of the fixed array. |
| 225 | // REQUIRES: 0 <= i < size() |
| 226 | const_reference operator[](size_type i) const { |
| 227 | assert(i < size()); |
| 228 | return data()[i]; |
| 229 | } |
| 230 | |
| 231 | // FixedArray::at |
| 232 | // |
| 233 | // Bounds-checked access. Returns a reference to the ith element of the |
| 234 | // fiexed array, or throws std::out_of_range |
| 235 | reference at(size_type i) { |
| 236 | if (ABSL_PREDICT_FALSE(i >= size())) { |
| 237 | base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
| 238 | } |
| 239 | return data()[i]; |
| 240 | } |
| 241 | |
| 242 | // Overload of FixedArray::at() to return a const reference to the ith element |
| 243 | // of the fixed array. |
| 244 | const_reference at(size_type i) const { |
| 245 | if (ABSL_PREDICT_FALSE(i >= size())) { |
| 246 | base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
| 247 | } |
| 248 | return data()[i]; |
| 249 | } |
| 250 | |
| 251 | // FixedArray::front() |
| 252 | // |
| 253 | // Returns a reference to the first element of the fixed array. |
| 254 | reference front() { return *begin(); } |
| 255 | |
| 256 | // Overload of FixedArray::front() to return a reference to the first element |
| 257 | // of a fixed array of const values. |
| 258 | const_reference front() const { return *begin(); } |
| 259 | |
| 260 | // FixedArray::back() |
| 261 | // |
| 262 | // Returns a reference to the last element of the fixed array. |
| 263 | reference back() { return *(end() - 1); } |
| 264 | |
| 265 | // Overload of FixedArray::back() to return a reference to the last element |
| 266 | // of a fixed array of const values. |
| 267 | const_reference back() const { return *(end() - 1); } |
| 268 | |
| 269 | // FixedArray::begin() |
| 270 | // |
| 271 | // Returns an iterator to the beginning of the fixed array. |
| 272 | iterator begin() { return data(); } |
| 273 | |
| 274 | // Overload of FixedArray::begin() to return a const iterator to the |
| 275 | // beginning of the fixed array. |
| 276 | const_iterator begin() const { return data(); } |
| 277 | |
| 278 | // FixedArray::cbegin() |
| 279 | // |
| 280 | // Returns a const iterator to the beginning of the fixed array. |
| 281 | const_iterator cbegin() const { return begin(); } |
| 282 | |
| 283 | // FixedArray::end() |
| 284 | // |
| 285 | // Returns an iterator to the end of the fixed array. |
| 286 | iterator end() { return data() + size(); } |
| 287 | |
| 288 | // Overload of FixedArray::end() to return a const iterator to the end of the |
| 289 | // fixed array. |
| 290 | const_iterator end() const { return data() + size(); } |
| 291 | |
| 292 | // FixedArray::cend() |
| 293 | // |
| 294 | // Returns a const iterator to the end of the fixed array. |
| 295 | const_iterator cend() const { return end(); } |
| 296 | |
| 297 | // FixedArray::rbegin() |
| 298 | // |
| 299 | // Returns a reverse iterator from the end of the fixed array. |
| 300 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
| 301 | |
| 302 | // Overload of FixedArray::rbegin() to return a const reverse iterator from |
| 303 | // the end of the fixed array. |
| 304 | const_reverse_iterator rbegin() const { |
| 305 | return const_reverse_iterator(end()); |
| 306 | } |
| 307 | |
| 308 | // FixedArray::crbegin() |
| 309 | // |
| 310 | // Returns a const reverse iterator from the end of the fixed array. |
| 311 | const_reverse_iterator crbegin() const { return rbegin(); } |
| 312 | |
| 313 | // FixedArray::rend() |
| 314 | // |
| 315 | // Returns a reverse iterator from the beginning of the fixed array. |
| 316 | reverse_iterator rend() { return reverse_iterator(begin()); } |
| 317 | |
| 318 | // Overload of FixedArray::rend() for returning a const reverse iterator |
| 319 | // from the beginning of the fixed array. |
| 320 | const_reverse_iterator rend() const { |
| 321 | return const_reverse_iterator(begin()); |
| 322 | } |
| 323 | |
| 324 | // FixedArray::crend() |
| 325 | // |
| 326 | // Returns a reverse iterator from the beginning of the fixed array. |
| 327 | const_reverse_iterator crend() const { return rend(); } |
| 328 | |
| 329 | // FixedArray::fill() |
| 330 | // |
| 331 | // Assigns the given `value` to all elements in the fixed array. |
| 332 | void fill(const value_type& val) { std::fill(begin(), end(), val); } |
| 333 | |
| 334 | // Relational operators. Equality operators are elementwise using |
| 335 | // `operator==`, while order operators order FixedArrays lexicographically. |
| 336 | friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { |
| 337 | return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
| 338 | } |
| 339 | |
| 340 | friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { |
| 341 | return !(lhs == rhs); |
| 342 | } |
| 343 | |
| 344 | friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { |
| 345 | return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), |
| 346 | rhs.end()); |
| 347 | } |
| 348 | |
| 349 | friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { |
| 350 | return rhs < lhs; |
| 351 | } |
| 352 | |
| 353 | friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { |
| 354 | return !(rhs < lhs); |
| 355 | } |
| 356 | |
| 357 | friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { |
| 358 | return !(lhs < rhs); |
| 359 | } |
| 360 | |
| 361 | template <typename H> |
| 362 | friend H AbslHashValue(H h, const FixedArray& v) { |
| 363 | return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()), |
| 364 | v.size()); |
| 365 | } |
| 366 | |
| 367 | private: |
| 368 | // StorageElement |
| 369 | // |
| 370 | // For FixedArrays with a C-style-array value_type, StorageElement is a POD |
| 371 | // wrapper struct called StorageElementWrapper that holds the value_type |
| 372 | // instance inside. This is needed for construction and destruction of the |
| 373 | // entire array regardless of how many dimensions it has. For all other cases, |
| 374 | // StorageElement is just an alias of value_type. |
| 375 | // |
| 376 | // Maintainer's Note: The simpler solution would be to simply wrap value_type |
| 377 | // in a struct whether it's an array or not. That causes some paranoid |
| 378 | // diagnostics to misfire, believing that 'data()' returns a pointer to a |
| 379 | // single element, rather than the packed array that it really is. |
| 380 | // e.g.: |
| 381 | // |
| 382 | // FixedArray<char> buf(1); |
| 383 | // sprintf(buf.data(), "foo"); |
| 384 | // |
| 385 | // error: call to int __builtin___sprintf_chk(etc...) |
| 386 | // will always overflow destination buffer [-Werror] |
| 387 | // |
| 388 | template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>, |
| 389 | size_t InnerN = std::extent<OuterT>::value> |
| 390 | struct StorageElementWrapper { |
| 391 | InnerT array[InnerN]; |
| 392 | }; |
| 393 | |
| 394 | using StorageElement = |
| 395 | absl::conditional_t<std::is_array<value_type>::value, |
| 396 | StorageElementWrapper<value_type>, value_type>; |
| 397 | |
| 398 | static pointer AsValueType(pointer ptr) { return ptr; } |
| 399 | static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { |
| 400 | return std::addressof(ptr->array); |
| 401 | } |
| 402 | |
| 403 | static_assert(sizeof(StorageElement) == sizeof(value_type), ""); |
| 404 | static_assert(alignof(StorageElement) == alignof(value_type), ""); |
| 405 | |
| 406 | class NonEmptyInlinedStorage { |
| 407 | public: |
| 408 | StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); } |
| 409 | void AnnotateConstruct(size_type n); |
| 410 | void AnnotateDestruct(size_type n); |
| 411 | |
| 412 | #ifdef ADDRESS_SANITIZER |
| 413 | void* RedzoneBegin() { return &redzone_begin_; } |
| 414 | void* RedzoneEnd() { return &redzone_end_ + 1; } |
| 415 | #endif // ADDRESS_SANITIZER |
| 416 | |
| 417 | private: |
| 418 | ADDRESS_SANITIZER_REDZONE(redzone_begin_); |
| 419 | alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])]; |
| 420 | ADDRESS_SANITIZER_REDZONE(redzone_end_); |
| 421 | }; |
| 422 | |
| 423 | class EmptyInlinedStorage { |
| 424 | public: |
| 425 | StorageElement* data() { return nullptr; } |
| 426 | void AnnotateConstruct(size_type) {} |
| 427 | void AnnotateDestruct(size_type) {} |
| 428 | }; |
| 429 | |
| 430 | using InlinedStorage = |
| 431 | absl::conditional_t<inline_elements == 0, EmptyInlinedStorage, |
| 432 | NonEmptyInlinedStorage>; |
| 433 | |
| 434 | // Storage |
| 435 | // |
| 436 | // An instance of Storage manages the inline and out-of-line memory for |
| 437 | // instances of FixedArray. This guarantees that even when construction of |
| 438 | // individual elements fails in the FixedArray constructor body, the |
| 439 | // destructor for Storage will still be called and out-of-line memory will be |
| 440 | // properly deallocated. |
| 441 | // |
| 442 | class Storage : public InlinedStorage { |
| 443 | public: |
| 444 | Storage(size_type n, const allocator_type& a) |
| 445 | : size_alloc_(n, a), data_(InitializeData()) {} |
| 446 | |
| 447 | ~Storage() noexcept { |
| 448 | if (UsingInlinedStorage(size())) { |
| 449 | InlinedStorage::AnnotateDestruct(size()); |
| 450 | } else { |
| 451 | AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | size_type size() const { return size_alloc_.template get<0>(); } |
| 456 | StorageElement* begin() const { return data_; } |
| 457 | StorageElement* end() const { return begin() + size(); } |
| 458 | allocator_type& alloc() { return size_alloc_.template get<1>(); } |
| 459 | |
| 460 | private: |
| 461 | static bool UsingInlinedStorage(size_type n) { |
| 462 | return n <= inline_elements; |
| 463 | } |
| 464 | |
| 465 | StorageElement* InitializeData() { |
| 466 | if (UsingInlinedStorage(size())) { |
| 467 | InlinedStorage::AnnotateConstruct(size()); |
| 468 | return InlinedStorage::data(); |
| 469 | } else { |
| 470 | return reinterpret_cast<StorageElement*>( |
| 471 | AllocatorTraits::allocate(alloc(), size())); |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s |
| 476 | container_internal::CompressedTuple<size_type, allocator_type> size_alloc_; |
| 477 | StorageElement* data_; |
| 478 | }; |
| 479 | |
| 480 | Storage storage_; |
| 481 | }; |
| 482 | |
| 483 | template <typename T, size_t N, typename A> |
| 484 | constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault; |
| 485 | |
| 486 | template <typename T, size_t N, typename A> |
| 487 | constexpr typename FixedArray<T, N, A>::size_type |
| 488 | FixedArray<T, N, A>::inline_elements; |
| 489 | |
| 490 | template <typename T, size_t N, typename A> |
| 491 | void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct( |
| 492 | typename FixedArray<T, N, A>::size_type n) { |
| 493 | #ifdef ADDRESS_SANITIZER |
| 494 | if (!n) return; |
| 495 | ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n); |
| 496 | ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin()); |
| 497 | #endif // ADDRESS_SANITIZER |
| 498 | static_cast<void>(n); // Mark used when not in asan mode |
| 499 | } |
| 500 | |
| 501 | template <typename T, size_t N, typename A> |
| 502 | void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct( |
| 503 | typename FixedArray<T, N, A>::size_type n) { |
| 504 | #ifdef ADDRESS_SANITIZER |
| 505 | if (!n) return; |
| 506 | ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd()); |
| 507 | ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data()); |
| 508 | #endif // ADDRESS_SANITIZER |
| 509 | static_cast<void>(n); // Mark used when not in asan mode |
| 510 | } |
| 511 | } // namespace absl |
| 512 | |
| 513 | #endif // ABSL_CONTAINER_FIXED_ARRAY_H_ |