Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/base/internal/sysinfo.h" |
| 16 | |
| 17 | #include "absl/base/attributes.h" |
| 18 | |
| 19 | #ifdef _WIN32 |
| 20 | #include <shlwapi.h> |
| 21 | #include <windows.h> |
| 22 | #else |
| 23 | #include <fcntl.h> |
| 24 | #include <pthread.h> |
| 25 | #include <sys/stat.h> |
| 26 | #include <sys/types.h> |
| 27 | #include <unistd.h> |
| 28 | #endif |
| 29 | |
| 30 | #ifdef __linux__ |
| 31 | #include <sys/syscall.h> |
| 32 | #endif |
| 33 | |
| 34 | #if defined(__APPLE__) || defined(__FreeBSD__) |
| 35 | #include <sys/sysctl.h> |
| 36 | #endif |
| 37 | |
| 38 | #if defined(__myriad2__) |
| 39 | #include <rtems.h> |
| 40 | #endif |
| 41 | |
| 42 | #include <string.h> |
| 43 | #include <cassert> |
| 44 | #include <cstdint> |
| 45 | #include <cstdio> |
| 46 | #include <cstdlib> |
| 47 | #include <ctime> |
| 48 | #include <limits> |
| 49 | #include <thread> // NOLINT(build/c++11) |
| 50 | #include <utility> |
| 51 | #include <vector> |
| 52 | |
| 53 | #include "absl/base/call_once.h" |
| 54 | #include "absl/base/internal/raw_logging.h" |
| 55 | #include "absl/base/internal/spinlock.h" |
| 56 | #include "absl/base/internal/unscaledcycleclock.h" |
| 57 | |
| 58 | namespace absl { |
| 59 | namespace base_internal { |
| 60 | |
| 61 | static once_flag init_system_info_once; |
| 62 | static int num_cpus = 0; |
| 63 | static double nominal_cpu_frequency = 1.0; // 0.0 might be dangerous. |
| 64 | |
| 65 | static int GetNumCPUs() { |
| 66 | #if defined(__myriad2__) |
| 67 | return 1; |
| 68 | #else |
| 69 | // Other possibilities: |
| 70 | // - Read /sys/devices/system/cpu/online and use cpumask_parse() |
| 71 | // - sysconf(_SC_NPROCESSORS_ONLN) |
| 72 | return std::thread::hardware_concurrency(); |
| 73 | #endif |
| 74 | } |
| 75 | |
| 76 | #if defined(_WIN32) |
| 77 | |
| 78 | static double GetNominalCPUFrequency() { |
| 79 | DWORD data; |
| 80 | DWORD data_size = sizeof(data); |
| 81 | #pragma comment(lib, "shlwapi.lib") // For SHGetValue(). |
| 82 | if (SUCCEEDED( |
| 83 | SHGetValueA(HKEY_LOCAL_MACHINE, |
| 84 | "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", |
| 85 | "~MHz", nullptr, &data, &data_size))) { |
| 86 | return data * 1e6; // Value is MHz. |
| 87 | } |
| 88 | return 1.0; |
| 89 | } |
| 90 | |
| 91 | #elif defined(CTL_HW) && defined(HW_CPU_FREQ) |
| 92 | |
| 93 | static double GetNominalCPUFrequency() { |
| 94 | unsigned freq; |
| 95 | size_t size = sizeof(freq); |
| 96 | int mib[2] = {CTL_HW, HW_CPU_FREQ}; |
| 97 | if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) { |
| 98 | return static_cast<double>(freq); |
| 99 | } |
| 100 | return 1.0; |
| 101 | } |
| 102 | |
| 103 | #else |
| 104 | |
| 105 | // Helper function for reading a long from a file. Returns true if successful |
| 106 | // and the memory location pointed to by value is set to the value read. |
| 107 | static bool ReadLongFromFile(const char *file, long *value) { |
| 108 | bool ret = false; |
| 109 | int fd = open(file, O_RDONLY); |
| 110 | if (fd != -1) { |
| 111 | char line[1024]; |
| 112 | char *err; |
| 113 | memset(line, '\0', sizeof(line)); |
| 114 | int len = read(fd, line, sizeof(line) - 1); |
| 115 | if (len <= 0) { |
| 116 | ret = false; |
| 117 | } else { |
| 118 | const long temp_value = strtol(line, &err, 10); |
| 119 | if (line[0] != '\0' && (*err == '\n' || *err == '\0')) { |
| 120 | *value = temp_value; |
| 121 | ret = true; |
| 122 | } |
| 123 | } |
| 124 | close(fd); |
| 125 | } |
| 126 | return ret; |
| 127 | } |
| 128 | |
| 129 | #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) |
| 130 | |
| 131 | // Reads a monotonic time source and returns a value in |
| 132 | // nanoseconds. The returned value uses an arbitrary epoch, not the |
| 133 | // Unix epoch. |
| 134 | static int64_t ReadMonotonicClockNanos() { |
| 135 | struct timespec t; |
| 136 | #ifdef CLOCK_MONOTONIC_RAW |
| 137 | int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t); |
| 138 | #else |
| 139 | int rc = clock_gettime(CLOCK_MONOTONIC, &t); |
| 140 | #endif |
| 141 | if (rc != 0) { |
| 142 | perror("clock_gettime() failed"); |
| 143 | abort(); |
| 144 | } |
| 145 | return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec; |
| 146 | } |
| 147 | |
| 148 | class UnscaledCycleClockWrapperForInitializeFrequency { |
| 149 | public: |
| 150 | static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } |
| 151 | }; |
| 152 | |
| 153 | struct TimeTscPair { |
| 154 | int64_t time; // From ReadMonotonicClockNanos(). |
| 155 | int64_t tsc; // From UnscaledCycleClock::Now(). |
| 156 | }; |
| 157 | |
| 158 | // Returns a pair of values (monotonic kernel time, TSC ticks) that |
| 159 | // approximately correspond to each other. This is accomplished by |
| 160 | // doing several reads and picking the reading with the lowest |
| 161 | // latency. This approach is used to minimize the probability that |
| 162 | // our thread was preempted between clock reads. |
| 163 | static TimeTscPair GetTimeTscPair() { |
| 164 | int64_t best_latency = std::numeric_limits<int64_t>::max(); |
| 165 | TimeTscPair best; |
| 166 | for (int i = 0; i < 10; ++i) { |
| 167 | int64_t t0 = ReadMonotonicClockNanos(); |
| 168 | int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now(); |
| 169 | int64_t t1 = ReadMonotonicClockNanos(); |
| 170 | int64_t latency = t1 - t0; |
| 171 | if (latency < best_latency) { |
| 172 | best_latency = latency; |
| 173 | best.time = t0; |
| 174 | best.tsc = tsc; |
| 175 | } |
| 176 | } |
| 177 | return best; |
| 178 | } |
| 179 | |
| 180 | // Measures and returns the TSC frequency by taking a pair of |
| 181 | // measurements approximately `sleep_nanoseconds` apart. |
| 182 | static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) { |
| 183 | auto t0 = GetTimeTscPair(); |
| 184 | struct timespec ts; |
| 185 | ts.tv_sec = 0; |
| 186 | ts.tv_nsec = sleep_nanoseconds; |
| 187 | while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {} |
| 188 | auto t1 = GetTimeTscPair(); |
| 189 | double elapsed_ticks = t1.tsc - t0.tsc; |
| 190 | double elapsed_time = (t1.time - t0.time) * 1e-9; |
| 191 | return elapsed_ticks / elapsed_time; |
| 192 | } |
| 193 | |
| 194 | // Measures and returns the TSC frequency by calling |
| 195 | // MeasureTscFrequencyWithSleep(), doubling the sleep interval until the |
| 196 | // frequency measurement stabilizes. |
| 197 | static double MeasureTscFrequency() { |
| 198 | double last_measurement = -1.0; |
| 199 | int sleep_nanoseconds = 1000000; // 1 millisecond. |
| 200 | for (int i = 0; i < 8; ++i) { |
| 201 | double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds); |
| 202 | if (measurement * 0.99 < last_measurement && |
| 203 | last_measurement < measurement * 1.01) { |
| 204 | // Use the current measurement if it is within 1% of the |
| 205 | // previous measurement. |
| 206 | return measurement; |
| 207 | } |
| 208 | last_measurement = measurement; |
| 209 | sleep_nanoseconds *= 2; |
| 210 | } |
| 211 | return last_measurement; |
| 212 | } |
| 213 | |
| 214 | #endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY |
| 215 | |
| 216 | static double GetNominalCPUFrequency() { |
| 217 | long freq = 0; |
| 218 | |
| 219 | // Google's production kernel has a patch to export the TSC |
| 220 | // frequency through sysfs. If the kernel is exporting the TSC |
| 221 | // frequency use that. There are issues where cpuinfo_max_freq |
| 222 | // cannot be relied on because the BIOS may be exporting an invalid |
| 223 | // p-state (on x86) or p-states may be used to put the processor in |
| 224 | // a new mode (turbo mode). Essentially, those frequencies cannot |
| 225 | // always be relied upon. The same reasons apply to /proc/cpuinfo as |
| 226 | // well. |
| 227 | if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) { |
| 228 | return freq * 1e3; // Value is kHz. |
| 229 | } |
| 230 | |
| 231 | #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) |
| 232 | // On these platforms, the TSC frequency is the nominal CPU |
| 233 | // frequency. But without having the kernel export it directly |
| 234 | // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no |
| 235 | // other way to reliably get the TSC frequency, so we have to |
| 236 | // measure it ourselves. Some CPUs abuse cpuinfo_max_freq by |
| 237 | // exporting "fake" frequencies for implementing new features. For |
| 238 | // example, Intel's turbo mode is enabled by exposing a p-state |
| 239 | // value with a higher frequency than that of the real TSC |
| 240 | // rate. Because of this, we prefer to measure the TSC rate |
| 241 | // ourselves on i386 and x86-64. |
| 242 | return MeasureTscFrequency(); |
| 243 | #else |
| 244 | |
| 245 | // If CPU scaling is in effect, we want to use the *maximum* |
| 246 | // frequency, not whatever CPU speed some random processor happens |
| 247 | // to be using now. |
| 248 | if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", |
| 249 | &freq)) { |
| 250 | return freq * 1e3; // Value is kHz. |
| 251 | } |
| 252 | |
| 253 | return 1.0; |
| 254 | #endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY |
| 255 | } |
| 256 | |
| 257 | #endif |
| 258 | |
| 259 | // InitializeSystemInfo() may be called before main() and before |
| 260 | // malloc is properly initialized, therefore this must not allocate |
| 261 | // memory. |
| 262 | static void InitializeSystemInfo() { |
| 263 | num_cpus = GetNumCPUs(); |
| 264 | nominal_cpu_frequency = GetNominalCPUFrequency(); |
| 265 | } |
| 266 | |
| 267 | int NumCPUs() { |
| 268 | base_internal::LowLevelCallOnce(&init_system_info_once, InitializeSystemInfo); |
| 269 | return num_cpus; |
| 270 | } |
| 271 | |
| 272 | double NominalCPUFrequency() { |
| 273 | base_internal::LowLevelCallOnce(&init_system_info_once, InitializeSystemInfo); |
| 274 | return nominal_cpu_frequency; |
| 275 | } |
| 276 | |
| 277 | #if defined(_WIN32) |
| 278 | |
| 279 | pid_t GetTID() { |
| 280 | return GetCurrentThreadId(); |
| 281 | } |
| 282 | |
| 283 | #elif defined(__linux__) |
| 284 | |
| 285 | #ifndef SYS_gettid |
| 286 | #define SYS_gettid __NR_gettid |
| 287 | #endif |
| 288 | |
| 289 | pid_t GetTID() { |
| 290 | return syscall(SYS_gettid); |
| 291 | } |
| 292 | |
| 293 | #elif defined(__akaros__) |
| 294 | |
| 295 | pid_t GetTID() { |
| 296 | // Akaros has a concept of "vcore context", which is the state the program |
| 297 | // is forced into when we need to make a user-level scheduling decision, or |
| 298 | // run a signal handler. This is analogous to the interrupt context that a |
| 299 | // CPU might enter if it encounters some kind of exception. |
| 300 | // |
| 301 | // There is no current thread context in vcore context, but we need to give |
| 302 | // a reasonable answer if asked for a thread ID (e.g., in a signal handler). |
| 303 | // Thread 0 always exists, so if we are in vcore context, we return that. |
| 304 | // |
| 305 | // Otherwise, we know (since we are using pthreads) that the uthread struct |
| 306 | // current_uthread is pointing to is the first element of a |
| 307 | // struct pthread_tcb, so we extract and return the thread ID from that. |
| 308 | // |
| 309 | // TODO(dcross): Akaros anticipates moving the thread ID to the uthread |
| 310 | // structure at some point. We should modify this code to remove the cast |
| 311 | // when that happens. |
| 312 | if (in_vcore_context()) |
| 313 | return 0; |
| 314 | return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id; |
| 315 | } |
| 316 | |
| 317 | #elif defined(__myriad2__) |
| 318 | |
| 319 | pid_t GetTID() { |
| 320 | uint32_t tid; |
| 321 | rtems_task_ident(RTEMS_SELF, 0, &tid); |
| 322 | return tid; |
| 323 | } |
| 324 | |
| 325 | #else |
| 326 | |
| 327 | // Fallback implementation of GetTID using pthread_getspecific. |
| 328 | static once_flag tid_once; |
| 329 | static pthread_key_t tid_key; |
| 330 | static absl::base_internal::SpinLock tid_lock( |
| 331 | absl::base_internal::kLinkerInitialized); |
| 332 | |
| 333 | // We set a bit per thread in this array to indicate that an ID is in |
| 334 | // use. ID 0 is unused because it is the default value returned by |
| 335 | // pthread_getspecific(). |
| 336 | static std::vector<uint32_t>* tid_array GUARDED_BY(tid_lock) = nullptr; |
| 337 | static constexpr int kBitsPerWord = 32; // tid_array is uint32_t. |
| 338 | |
| 339 | // Returns the TID to tid_array. |
| 340 | static void FreeTID(void *v) { |
| 341 | intptr_t tid = reinterpret_cast<intptr_t>(v); |
| 342 | int word = tid / kBitsPerWord; |
| 343 | uint32_t mask = ~(1u << (tid % kBitsPerWord)); |
| 344 | absl::base_internal::SpinLockHolder lock(&tid_lock); |
| 345 | assert(0 <= word && static_cast<size_t>(word) < tid_array->size()); |
| 346 | (*tid_array)[word] &= mask; |
| 347 | } |
| 348 | |
| 349 | static void InitGetTID() { |
| 350 | if (pthread_key_create(&tid_key, FreeTID) != 0) { |
| 351 | // The logging system calls GetTID() so it can't be used here. |
| 352 | perror("pthread_key_create failed"); |
| 353 | abort(); |
| 354 | } |
| 355 | |
| 356 | // Initialize tid_array. |
| 357 | absl::base_internal::SpinLockHolder lock(&tid_lock); |
| 358 | tid_array = new std::vector<uint32_t>(1); |
| 359 | (*tid_array)[0] = 1; // ID 0 is never-allocated. |
| 360 | } |
| 361 | |
| 362 | // Return a per-thread small integer ID from pthread's thread-specific data. |
| 363 | pid_t GetTID() { |
| 364 | absl::call_once(tid_once, InitGetTID); |
| 365 | |
| 366 | intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key)); |
| 367 | if (tid != 0) { |
| 368 | return tid; |
| 369 | } |
| 370 | |
| 371 | int bit; // tid_array[word] = 1u << bit; |
| 372 | size_t word; |
| 373 | { |
| 374 | // Search for the first unused ID. |
| 375 | absl::base_internal::SpinLockHolder lock(&tid_lock); |
| 376 | // First search for a word in the array that is not all ones. |
| 377 | word = 0; |
| 378 | while (word < tid_array->size() && ~(*tid_array)[word] == 0) { |
| 379 | ++word; |
| 380 | } |
| 381 | if (word == tid_array->size()) { |
| 382 | tid_array->push_back(0); // No space left, add kBitsPerWord more IDs. |
| 383 | } |
| 384 | // Search for a zero bit in the word. |
| 385 | bit = 0; |
| 386 | while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) { |
| 387 | ++bit; |
| 388 | } |
| 389 | tid = (word * kBitsPerWord) + bit; |
| 390 | (*tid_array)[word] |= 1u << bit; // Mark the TID as allocated. |
| 391 | } |
| 392 | |
| 393 | if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) { |
| 394 | perror("pthread_setspecific failed"); |
| 395 | abort(); |
| 396 | } |
| 397 | |
| 398 | return static_cast<pid_t>(tid); |
| 399 | } |
| 400 | |
| 401 | #endif |
| 402 | |
| 403 | } // namespace base_internal |
| 404 | } // namespace absl |