Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | // |
| 15 | // ----------------------------------------------------------------------------- |
| 16 | // File: algorithm.h |
| 17 | // ----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // This header file contains Google extensions to the standard <algorithm> C++ |
| 20 | // header. |
| 21 | |
| 22 | #ifndef ABSL_ALGORITHM_ALGORITHM_H_ |
| 23 | #define ABSL_ALGORITHM_ALGORITHM_H_ |
| 24 | |
| 25 | #include <algorithm> |
| 26 | #include <iterator> |
| 27 | #include <type_traits> |
| 28 | |
| 29 | namespace absl { |
| 30 | |
| 31 | namespace algorithm_internal { |
| 32 | |
| 33 | // Performs comparisons with operator==, similar to C++14's `std::equal_to<>`. |
| 34 | struct EqualTo { |
| 35 | template <typename T, typename U> |
| 36 | bool operator()(const T& a, const U& b) const { |
| 37 | return a == b; |
| 38 | } |
| 39 | }; |
| 40 | |
| 41 | template <typename InputIter1, typename InputIter2, typename Pred> |
| 42 | bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
| 43 | InputIter2 last2, Pred pred, std::input_iterator_tag, |
| 44 | std::input_iterator_tag) { |
| 45 | while (true) { |
| 46 | if (first1 == last1) return first2 == last2; |
| 47 | if (first2 == last2) return false; |
| 48 | if (!pred(*first1, *first2)) return false; |
| 49 | ++first1; |
| 50 | ++first2; |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | template <typename InputIter1, typename InputIter2, typename Pred> |
| 55 | bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
| 56 | InputIter2 last2, Pred&& pred, std::random_access_iterator_tag, |
| 57 | std::random_access_iterator_tag) { |
| 58 | return (last1 - first1 == last2 - first2) && |
| 59 | std::equal(first1, last1, first2, std::forward<Pred>(pred)); |
| 60 | } |
| 61 | |
| 62 | // When we are using our own internal predicate that just applies operator==, we |
| 63 | // forward to the non-predicate form of std::equal. This enables an optimization |
| 64 | // in libstdc++ that can result in std::memcmp being used for integer types. |
| 65 | template <typename InputIter1, typename InputIter2> |
| 66 | bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
| 67 | InputIter2 last2, algorithm_internal::EqualTo /* unused */, |
| 68 | std::random_access_iterator_tag, |
| 69 | std::random_access_iterator_tag) { |
| 70 | return (last1 - first1 == last2 - first2) && |
| 71 | std::equal(first1, last1, first2); |
| 72 | } |
| 73 | |
| 74 | template <typename It> |
| 75 | It RotateImpl(It first, It middle, It last, std::true_type) { |
| 76 | return std::rotate(first, middle, last); |
| 77 | } |
| 78 | |
| 79 | template <typename It> |
| 80 | It RotateImpl(It first, It middle, It last, std::false_type) { |
| 81 | std::rotate(first, middle, last); |
| 82 | return std::next(first, std::distance(middle, last)); |
| 83 | } |
| 84 | |
| 85 | } // namespace algorithm_internal |
| 86 | |
| 87 | // Compares the equality of two ranges specified by pairs of iterators, using |
| 88 | // the given predicate, returning true iff for each corresponding iterator i1 |
| 89 | // and i2 in the first and second range respectively, pred(*i1, *i2) == true |
| 90 | // |
| 91 | // This comparison takes at most min(`last1` - `first1`, `last2` - `first2`) |
| 92 | // invocations of the predicate. Additionally, if InputIter1 and InputIter2 are |
| 93 | // both random-access iterators, and `last1` - `first1` != `last2` - `first2`, |
| 94 | // then the predicate is never invoked and the function returns false. |
| 95 | // |
| 96 | // This is a C++11-compatible implementation of C++14 `std::equal`. See |
| 97 | // https://en.cppreference.com/w/cpp/algorithm/equal for more information. |
| 98 | template <typename InputIter1, typename InputIter2, typename Pred> |
| 99 | bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
| 100 | InputIter2 last2, Pred&& pred) { |
| 101 | return algorithm_internal::EqualImpl( |
| 102 | first1, last1, first2, last2, std::forward<Pred>(pred), |
| 103 | typename std::iterator_traits<InputIter1>::iterator_category{}, |
| 104 | typename std::iterator_traits<InputIter2>::iterator_category{}); |
| 105 | } |
| 106 | |
| 107 | // Performs comparison of two ranges specified by pairs of iterators using |
| 108 | // operator==. |
| 109 | template <typename InputIter1, typename InputIter2> |
| 110 | bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
| 111 | InputIter2 last2) { |
| 112 | return absl::equal(first1, last1, first2, last2, |
| 113 | algorithm_internal::EqualTo{}); |
| 114 | } |
| 115 | |
| 116 | // Performs a linear search for `value` using the iterator `first` up to |
| 117 | // but not including `last`, returning true if [`first`, `last`) contains an |
| 118 | // element equal to `value`. |
| 119 | // |
| 120 | // A linear search is of O(n) complexity which is guaranteed to make at most |
| 121 | // n = (`last` - `first`) comparisons. A linear search over short containers |
| 122 | // may be faster than a binary search, even when the container is sorted. |
| 123 | template <typename InputIterator, typename EqualityComparable> |
| 124 | bool linear_search(InputIterator first, InputIterator last, |
| 125 | const EqualityComparable& value) { |
| 126 | return std::find(first, last, value) != last; |
| 127 | } |
| 128 | |
| 129 | // Performs a left rotation on a range of elements (`first`, `last`) such that |
| 130 | // `middle` is now the first element. `rotate()` returns an iterator pointing to |
| 131 | // the first element before rotation. This function is exactly the same as |
| 132 | // `std::rotate`, but fixes a bug in gcc |
| 133 | // <= 4.9 where `std::rotate` returns `void` instead of an iterator. |
| 134 | // |
| 135 | // The complexity of this algorithm is the same as that of `std::rotate`, but if |
| 136 | // `ForwardIterator` is not a random-access iterator, then `absl::rotate` |
| 137 | // performs an additional pass over the range to construct the return value. |
| 138 | |
| 139 | template <typename ForwardIterator> |
| 140 | ForwardIterator rotate(ForwardIterator first, ForwardIterator middle, |
| 141 | ForwardIterator last) { |
| 142 | return algorithm_internal::RotateImpl( |
| 143 | first, middle, last, |
| 144 | std::is_same<decltype(std::rotate(first, middle, last)), |
| 145 | ForwardIterator>()); |
| 146 | } |
| 147 | |
| 148 | } // namespace absl |
| 149 | |
| 150 | #endif // ABSL_ALGORITHM_ALGORITHM_H_ |