Austin Schuh | 3333ec7 | 2022-12-29 16:21:06 -0800 | [diff] [blame^] | 1 | /* Copyright (C) 2013-2016, The Regents of The University of Michigan. |
| 2 | All rights reserved. |
| 3 | This software was developed in the APRIL Robotics Lab under the |
| 4 | direction of Edwin Olson, ebolson@umich.edu. This software may be |
| 5 | available under alternative licensing terms; contact the address above. |
| 6 | Redistribution and use in source and binary forms, with or without |
| 7 | modification, are permitted provided that the following conditions are met: |
| 8 | 1. Redistributions of source code must retain the above copyright notice, this |
| 9 | list of conditions and the following disclaimer. |
| 10 | 2. Redistributions in binary form must reproduce the above copyright notice, |
| 11 | this list of conditions and the following disclaimer in the documentation |
| 12 | and/or other materials provided with the distribution. |
| 13 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 14 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| 17 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 20 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | The views and conclusions contained in the software and documentation are those |
| 24 | of the authors and should not be interpreted as representing official policies, |
| 25 | either expressed or implied, of the Regents of The University of Michigan. |
| 26 | */ |
| 27 | |
| 28 | #include <stdio.h> |
| 29 | #include <stdlib.h> |
| 30 | #include <string.h> |
| 31 | #include <assert.h> |
| 32 | |
| 33 | #include "zhash.h" |
| 34 | |
| 35 | // force a rehash when our capacity is less than this many times the size |
| 36 | #define ZHASH_FACTOR_CRITICAL 2 |
| 37 | |
| 38 | // When resizing, how much bigger do we want to be? (should be greater than _CRITICAL) |
| 39 | #define ZHASH_FACTOR_REALLOC 4 |
| 40 | |
| 41 | struct zhash |
| 42 | { |
| 43 | size_t keysz, valuesz; |
| 44 | int entrysz; // valid byte (1) + keysz + values |
| 45 | |
| 46 | uint32_t(*hash)(const void *a); |
| 47 | |
| 48 | // returns 1 if equal |
| 49 | int(*equals)(const void *a, const void *b); |
| 50 | |
| 51 | int size; // # of items in hash table |
| 52 | |
| 53 | char *entries; // each entry of size entrysz; |
| 54 | int nentries; // how many entries are allocated? Never 0. |
| 55 | }; |
| 56 | |
| 57 | zhash_t *zhash_create_capacity(size_t keysz, size_t valuesz, |
| 58 | uint32_t(*hash)(const void *a), int(*equals)(const void *a, const void*b), |
| 59 | int capacity) |
| 60 | { |
| 61 | assert(hash != NULL); |
| 62 | assert(equals != NULL); |
| 63 | |
| 64 | // resize... |
| 65 | int _nentries = ZHASH_FACTOR_REALLOC * capacity; |
| 66 | if (_nentries < 8) |
| 67 | _nentries = 8; |
| 68 | |
| 69 | // to a power of 2. |
| 70 | int nentries = _nentries; |
| 71 | if ((nentries & (nentries - 1)) != 0) { |
| 72 | nentries = 8; |
| 73 | while (nentries < _nentries) |
| 74 | nentries *= 2; |
| 75 | } |
| 76 | |
| 77 | zhash_t *zh = (zhash_t*) calloc(1, sizeof(zhash_t)); |
| 78 | zh->keysz = keysz; |
| 79 | zh->valuesz = valuesz; |
| 80 | zh->hash = hash; |
| 81 | zh->equals = equals; |
| 82 | zh->nentries = nentries; |
| 83 | |
| 84 | zh->entrysz = 1 + zh->keysz + zh->valuesz; |
| 85 | |
| 86 | zh->entries = calloc(zh->nentries, zh->entrysz); |
| 87 | zh->nentries = nentries; |
| 88 | |
| 89 | return zh; |
| 90 | } |
| 91 | |
| 92 | zhash_t *zhash_create(size_t keysz, size_t valuesz, |
| 93 | uint32_t(*hash)(const void *a), int(*equals)(const void *a, const void *b)) |
| 94 | { |
| 95 | return zhash_create_capacity(keysz, valuesz, hash, equals, 8); |
| 96 | } |
| 97 | |
| 98 | void zhash_destroy(zhash_t *zh) |
| 99 | { |
| 100 | if (zh == NULL) |
| 101 | return; |
| 102 | |
| 103 | free(zh->entries); |
| 104 | free(zh); |
| 105 | } |
| 106 | |
| 107 | int zhash_size(const zhash_t *zh) |
| 108 | { |
| 109 | return zh->size; |
| 110 | } |
| 111 | |
| 112 | void zhash_clear(zhash_t *zh) |
| 113 | { |
| 114 | memset(zh->entries, 0, zh->nentries * zh->entrysz); |
| 115 | zh->size = 0; |
| 116 | } |
| 117 | |
| 118 | int zhash_get_volatile(const zhash_t *zh, const void *key, void *out_value) |
| 119 | { |
| 120 | uint32_t code = zh->hash(key); |
| 121 | uint32_t entry_idx = code & (zh->nentries - 1); |
| 122 | |
| 123 | while (zh->entries[entry_idx * zh->entrysz]) { |
| 124 | void *this_key = &zh->entries[entry_idx * zh->entrysz + 1]; |
| 125 | if (zh->equals(key, this_key)) { |
| 126 | *((void**) out_value) = &zh->entries[entry_idx * zh->entrysz + 1 + zh->keysz]; |
| 127 | return 1; |
| 128 | } |
| 129 | |
| 130 | entry_idx = (entry_idx + 1) & (zh->nentries - 1); |
| 131 | } |
| 132 | |
| 133 | return 0; |
| 134 | } |
| 135 | |
| 136 | int zhash_get(const zhash_t *zh, const void *key, void *out_value) |
| 137 | { |
| 138 | void *tmp; |
| 139 | if (zhash_get_volatile(zh, key, &tmp)) { |
| 140 | memcpy(out_value, tmp, zh->valuesz); |
| 141 | return 1; |
| 142 | } |
| 143 | |
| 144 | return 0; |
| 145 | } |
| 146 | |
| 147 | int zhash_put(zhash_t *zh, const void *key, const void *value, void *oldkey, void *oldvalue) |
| 148 | { |
| 149 | uint32_t code = zh->hash(key); |
| 150 | uint32_t entry_idx = code & (zh->nentries - 1); |
| 151 | |
| 152 | while (zh->entries[entry_idx * zh->entrysz]) { |
| 153 | void *this_key = &zh->entries[entry_idx * zh->entrysz + 1]; |
| 154 | void *this_value = &zh->entries[entry_idx * zh->entrysz + 1 + zh->keysz]; |
| 155 | |
| 156 | if (zh->equals(key, this_key)) { |
| 157 | // replace |
| 158 | if (oldkey) |
| 159 | memcpy(oldkey, this_key, zh->keysz); |
| 160 | if (oldvalue) |
| 161 | memcpy(oldvalue, this_value, zh->valuesz); |
| 162 | memcpy(this_key, key, zh->keysz); |
| 163 | memcpy(this_value, value, zh->valuesz); |
| 164 | zh->entries[entry_idx * zh->entrysz] = 1; // mark valid |
| 165 | return 1; |
| 166 | } |
| 167 | |
| 168 | entry_idx = (entry_idx + 1) & (zh->nentries - 1); |
| 169 | } |
| 170 | |
| 171 | // add the entry |
| 172 | zh->entries[entry_idx * zh->entrysz] = 1; |
| 173 | memcpy(&zh->entries[entry_idx * zh->entrysz + 1], key, zh->keysz); |
| 174 | memcpy(&zh->entries[entry_idx * zh->entrysz + 1 + zh->keysz], value, zh->valuesz); |
| 175 | zh->size++; |
| 176 | |
| 177 | if (zh->nentries < ZHASH_FACTOR_CRITICAL * zh->size) { |
| 178 | zhash_t *newhash = zhash_create_capacity(zh->keysz, zh->valuesz, |
| 179 | zh->hash, zh->equals, |
| 180 | zh->size); |
| 181 | |
| 182 | for (int idx = 0; idx < zh->nentries; idx++) { |
| 183 | |
| 184 | if (zh->entries[idx * zh->entrysz]) { |
| 185 | void *this_key = &zh->entries[idx * zh->entrysz + 1]; |
| 186 | void *this_value = &zh->entries[idx * zh->entrysz + 1 + zh->keysz]; |
| 187 | if (zhash_put(newhash, this_key, this_value, NULL, NULL)) |
| 188 | assert(0); // shouldn't already be present. |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | // play switch-a-roo |
| 193 | zhash_t tmp; |
| 194 | memcpy(&tmp, zh, sizeof(zhash_t)); |
| 195 | memcpy(zh, newhash, sizeof(zhash_t)); |
| 196 | memcpy(newhash, &tmp, sizeof(zhash_t)); |
| 197 | zhash_destroy(newhash); |
| 198 | } |
| 199 | |
| 200 | return 0; |
| 201 | } |
| 202 | |
| 203 | int zhash_remove(zhash_t *zh, const void *key, void *old_key, void *old_value) |
| 204 | { |
| 205 | uint32_t code = zh->hash(key); |
| 206 | uint32_t entry_idx = code & (zh->nentries - 1); |
| 207 | |
| 208 | while (zh->entries[entry_idx * zh->entrysz]) { |
| 209 | void *this_key = &zh->entries[entry_idx * zh->entrysz + 1]; |
| 210 | void *this_value = &zh->entries[entry_idx * zh->entrysz + 1 + zh->keysz]; |
| 211 | |
| 212 | if (zh->equals(key, this_key)) { |
| 213 | if (old_key) |
| 214 | memcpy(old_key, this_key, zh->keysz); |
| 215 | if (old_value) |
| 216 | memcpy(old_value, this_value, zh->valuesz); |
| 217 | |
| 218 | // mark this entry as available |
| 219 | zh->entries[entry_idx * zh->entrysz] = 0; |
| 220 | zh->size--; |
| 221 | |
| 222 | // reinsert any consecutive entries that follow |
| 223 | while (1) { |
| 224 | entry_idx = (entry_idx + 1) & (zh->nentries - 1); |
| 225 | |
| 226 | if (zh->entries[entry_idx * zh->entrysz]) { |
| 227 | // completely remove this entry |
| 228 | char *tmp = malloc(sizeof(char)*zh->entrysz); |
| 229 | memcpy(tmp, &zh->entries[entry_idx * zh->entrysz], zh->entrysz); |
| 230 | zh->entries[entry_idx * zh->entrysz] = 0; |
| 231 | zh->size--; |
| 232 | // reinsert it |
| 233 | if (zhash_put(zh, &tmp[1], &tmp[1+zh->keysz], NULL, NULL)) |
| 234 | assert(0); |
| 235 | free(tmp); |
| 236 | } else { |
| 237 | break; |
| 238 | } |
| 239 | } |
| 240 | return 1; |
| 241 | } |
| 242 | |
| 243 | entry_idx = (entry_idx + 1) & (zh->nentries - 1); |
| 244 | } |
| 245 | |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | zhash_t *zhash_copy(const zhash_t *zh) |
| 250 | { |
| 251 | zhash_t *newhash = zhash_create_capacity(zh->keysz, zh->valuesz, |
| 252 | zh->hash, zh->equals, |
| 253 | zh->size); |
| 254 | |
| 255 | for (int entry_idx = 0; entry_idx < zh->nentries; entry_idx++) { |
| 256 | if (zh->entries[entry_idx * zh->entrysz]) { |
| 257 | void *this_key = &zh->entries[entry_idx * zh->entrysz + 1]; |
| 258 | void *this_value = &zh->entries[entry_idx * zh->entrysz + 1 + zh->keysz]; |
| 259 | if (zhash_put(newhash, this_key, this_value, NULL, NULL)) |
| 260 | assert(0); // shouldn't already be present. |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | return newhash; |
| 265 | } |
| 266 | |
| 267 | int zhash_contains(const zhash_t *zh, const void *key) |
| 268 | { |
| 269 | void *tmp; |
| 270 | return zhash_get_volatile(zh, key, &tmp); |
| 271 | } |
| 272 | |
| 273 | void zhash_iterator_init(zhash_t *zh, zhash_iterator_t *zit) |
| 274 | { |
| 275 | zit->zh = zh; |
| 276 | zit->czh = zh; |
| 277 | zit->last_entry = -1; |
| 278 | } |
| 279 | |
| 280 | void zhash_iterator_init_const(const zhash_t *zh, zhash_iterator_t *zit) |
| 281 | { |
| 282 | zit->zh = NULL; |
| 283 | zit->czh = zh; |
| 284 | zit->last_entry = -1; |
| 285 | } |
| 286 | |
| 287 | int zhash_iterator_next_volatile(zhash_iterator_t *zit, void *outkey, void *outvalue) |
| 288 | { |
| 289 | const zhash_t *zh = zit->czh; |
| 290 | |
| 291 | while (1) { |
| 292 | if (zit->last_entry + 1 >= zh->nentries) |
| 293 | return 0; |
| 294 | |
| 295 | zit->last_entry++; |
| 296 | |
| 297 | if (zh->entries[zit->last_entry * zh->entrysz]) { |
| 298 | void *this_key = &zh->entries[zit->last_entry * zh->entrysz + 1]; |
| 299 | void *this_value = &zh->entries[zit->last_entry * zh->entrysz + 1 + zh->keysz]; |
| 300 | |
| 301 | if (outkey != NULL) |
| 302 | *((void**) outkey) = this_key; |
| 303 | if (outvalue != NULL) |
| 304 | *((void**) outvalue) = this_value; |
| 305 | |
| 306 | return 1; |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | int zhash_iterator_next(zhash_iterator_t *zit, void *outkey, void *outvalue) |
| 312 | { |
| 313 | const zhash_t *zh = zit->czh; |
| 314 | |
| 315 | void *outkeyp, *outvaluep; |
| 316 | |
| 317 | if (!zhash_iterator_next_volatile(zit, &outkeyp, &outvaluep)) |
| 318 | return 0; |
| 319 | |
| 320 | if (outkey != NULL) |
| 321 | memcpy(outkey, outkeyp, zh->keysz); |
| 322 | if (outvalue != NULL) |
| 323 | memcpy(outvalue, outvaluep, zh->valuesz); |
| 324 | |
| 325 | return 1; |
| 326 | } |
| 327 | |
| 328 | void zhash_iterator_remove(zhash_iterator_t *zit) |
| 329 | { |
| 330 | assert(zit->zh); // can't call _remove on a iterator with const zhash |
| 331 | zhash_t *zh = zit->zh; |
| 332 | |
| 333 | zh->entries[zit->last_entry * zh->entrysz] = 0; |
| 334 | zh->size--; |
| 335 | |
| 336 | // re-insert following entries |
| 337 | int entry_idx = (zit->last_entry + 1) & (zh->nentries - 1); |
| 338 | while (zh->entries[entry_idx *zh->entrysz]) { |
| 339 | // completely remove this entry |
| 340 | char *tmp = malloc(sizeof(char)*zh->entrysz); |
| 341 | memcpy(tmp, &zh->entries[entry_idx * zh->entrysz], zh->entrysz); |
| 342 | zh->entries[entry_idx * zh->entrysz] = 0; |
| 343 | zh->size--; |
| 344 | |
| 345 | // reinsert it |
| 346 | if (zhash_put(zh, &tmp[1], &tmp[1+zh->keysz], NULL, NULL)) |
| 347 | assert(0); |
| 348 | free(tmp); |
| 349 | |
| 350 | entry_idx = (entry_idx + 1) & (zh->nentries - 1); |
| 351 | } |
| 352 | |
| 353 | zit->last_entry--; |
| 354 | } |
| 355 | |
| 356 | void zhash_map_keys(zhash_t *zh, void (*f)()) |
| 357 | { |
| 358 | assert(zh != NULL); |
| 359 | if (f == NULL) |
| 360 | return; |
| 361 | |
| 362 | zhash_iterator_t itr; |
| 363 | zhash_iterator_init(zh, &itr); |
| 364 | |
| 365 | void *key, *value; |
| 366 | |
| 367 | while(zhash_iterator_next_volatile(&itr, &key, &value)) { |
| 368 | f(key); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | void zhash_vmap_keys(zhash_t * zh, void (*f)()) |
| 373 | { |
| 374 | assert(zh != NULL); |
| 375 | if (f == NULL) |
| 376 | return; |
| 377 | |
| 378 | zhash_iterator_t itr; |
| 379 | zhash_iterator_init(zh, &itr); |
| 380 | |
| 381 | void *key, *value; |
| 382 | |
| 383 | while(zhash_iterator_next_volatile(&itr, &key, &value)) { |
| 384 | void *p = *(void**) key; |
| 385 | f(p); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | void zhash_map_values(zhash_t * zh, void (*f)()) |
| 390 | { |
| 391 | assert(zh != NULL); |
| 392 | if (f == NULL) |
| 393 | return; |
| 394 | |
| 395 | zhash_iterator_t itr; |
| 396 | zhash_iterator_init(zh, &itr); |
| 397 | |
| 398 | void *key, *value; |
| 399 | while(zhash_iterator_next_volatile(&itr, &key, &value)) { |
| 400 | f(value); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | void zhash_vmap_values(zhash_t * zh, void (*f)()) |
| 405 | { |
| 406 | assert(zh != NULL); |
| 407 | if (f == NULL) |
| 408 | return; |
| 409 | |
| 410 | zhash_iterator_t itr; |
| 411 | zhash_iterator_init(zh, &itr); |
| 412 | |
| 413 | void *key, *value; |
| 414 | while(zhash_iterator_next_volatile(&itr, &key, &value)) { |
| 415 | void *p = *(void**) value; |
| 416 | f(p); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | zarray_t *zhash_keys(const zhash_t *zh) |
| 421 | { |
| 422 | assert(zh != NULL); |
| 423 | |
| 424 | zarray_t *za = zarray_create(zh->keysz); |
| 425 | |
| 426 | zhash_iterator_t itr; |
| 427 | zhash_iterator_init_const(zh, &itr); |
| 428 | |
| 429 | void *key, *value; |
| 430 | while(zhash_iterator_next_volatile(&itr, &key, &value)) { |
| 431 | zarray_add(za, key); |
| 432 | } |
| 433 | |
| 434 | return za; |
| 435 | } |
| 436 | |
| 437 | zarray_t *zhash_values(const zhash_t *zh) |
| 438 | { |
| 439 | assert(zh != NULL); |
| 440 | |
| 441 | zarray_t *za = zarray_create(zh->valuesz); |
| 442 | |
| 443 | zhash_iterator_t itr; |
| 444 | zhash_iterator_init_const(zh, &itr); |
| 445 | |
| 446 | void *key, *value; |
| 447 | while(zhash_iterator_next_volatile(&itr, &key, &value)) { |
| 448 | zarray_add(za, value); |
| 449 | } |
| 450 | |
| 451 | return za; |
| 452 | } |
| 453 | |
| 454 | |
| 455 | uint32_t zhash_uint32_hash(const void *_a) |
| 456 | { |
| 457 | assert(_a != NULL); |
| 458 | |
| 459 | uint32_t a = *((uint32_t*) _a); |
| 460 | return a; |
| 461 | } |
| 462 | |
| 463 | int zhash_uint32_equals(const void *_a, const void *_b) |
| 464 | { |
| 465 | assert(_a != NULL); |
| 466 | assert(_b != NULL); |
| 467 | |
| 468 | uint32_t a = *((uint32_t*) _a); |
| 469 | uint32_t b = *((uint32_t*) _b); |
| 470 | |
| 471 | return a==b; |
| 472 | } |
| 473 | |
| 474 | uint32_t zhash_uint64_hash(const void *_a) |
| 475 | { |
| 476 | assert(_a != NULL); |
| 477 | |
| 478 | uint64_t a = *((uint64_t*) _a); |
| 479 | return (uint32_t) (a ^ (a >> 32)); |
| 480 | } |
| 481 | |
| 482 | int zhash_uint64_equals(const void *_a, const void *_b) |
| 483 | { |
| 484 | assert(_a != NULL); |
| 485 | assert(_b != NULL); |
| 486 | |
| 487 | uint64_t a = *((uint64_t*) _a); |
| 488 | uint64_t b = *((uint64_t*) _b); |
| 489 | |
| 490 | return a==b; |
| 491 | } |
| 492 | |
| 493 | |
| 494 | union uintpointer |
| 495 | { |
| 496 | const void *p; |
| 497 | uint32_t i; |
| 498 | }; |
| 499 | |
| 500 | uint32_t zhash_ptr_hash(const void *a) |
| 501 | { |
| 502 | assert(a != NULL); |
| 503 | |
| 504 | union uintpointer ip; |
| 505 | ip.p = * (void**)a; |
| 506 | |
| 507 | // compute a hash from the lower 32 bits of the pointer (on LE systems) |
| 508 | uint32_t hash = ip.i; |
| 509 | hash ^= (hash >> 7); |
| 510 | |
| 511 | return hash; |
| 512 | } |
| 513 | |
| 514 | |
| 515 | int zhash_ptr_equals(const void *a, const void *b) |
| 516 | { |
| 517 | assert(a != NULL); |
| 518 | assert(b != NULL); |
| 519 | |
| 520 | const void * ptra = * (void**)a; |
| 521 | const void * ptrb = * (void**)b; |
| 522 | return ptra == ptrb; |
| 523 | } |
| 524 | |
| 525 | |
| 526 | int zhash_str_equals(const void *_a, const void *_b) |
| 527 | { |
| 528 | assert(_a != NULL); |
| 529 | assert(_b != NULL); |
| 530 | |
| 531 | char *a = * (char**)_a; |
| 532 | char *b = * (char**)_b; |
| 533 | |
| 534 | return !strcmp(a, b); |
| 535 | } |
| 536 | |
| 537 | uint32_t zhash_str_hash(const void *_a) |
| 538 | { |
| 539 | assert(_a != NULL); |
| 540 | |
| 541 | char *a = * (char**)_a; |
| 542 | |
| 543 | uint32_t hash = 0; |
| 544 | while (*a != 0) { |
| 545 | // optimization of hash x FNV_prime |
| 546 | hash += (hash << 1) + (hash << 4) + (hash << 7) + (hash << 8) + (hash << 24); |
| 547 | hash ^= *a; |
| 548 | a++; |
| 549 | } |
| 550 | |
| 551 | return hash; |
| 552 | } |
| 553 | |
| 554 | |
| 555 | void zhash_debug(zhash_t *zh) |
| 556 | { |
| 557 | for (int entry_idx = 0; entry_idx < zh->nentries; entry_idx++) { |
| 558 | char *k, *v; |
| 559 | memcpy(&k, &zh->entries[entry_idx * zh->entrysz + 1], sizeof(char*)); |
| 560 | memcpy(&v, &zh->entries[entry_idx * zh->entrysz + 1 + zh->keysz], sizeof(char*)); |
| 561 | printf("%d: %d, %s => %s\n", entry_idx, zh->entries[entry_idx * zh->entrysz], k, v); |
| 562 | } |
| 563 | } |