Austin Schuh | 3333ec7 | 2022-12-29 16:21:06 -0800 | [diff] [blame^] | 1 | /* Copyright (C) 2013-2016, The Regents of The University of Michigan. |
| 2 | All rights reserved. |
| 3 | This software was developed in the APRIL Robotics Lab under the |
| 4 | direction of Edwin Olson, ebolson@umich.edu. This software may be |
| 5 | available under alternative licensing terms; contact the address above. |
| 6 | Redistribution and use in source and binary forms, with or without |
| 7 | modification, are permitted provided that the following conditions are met: |
| 8 | 1. Redistributions of source code must retain the above copyright notice, this |
| 9 | list of conditions and the following disclaimer. |
| 10 | 2. Redistributions in binary form must reproduce the above copyright notice, |
| 11 | this list of conditions and the following disclaimer in the documentation |
| 12 | and/or other materials provided with the distribution. |
| 13 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 14 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| 17 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 20 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | The views and conclusions contained in the software and documentation are those |
| 24 | of the authors and should not be interpreted as representing official policies, |
| 25 | either expressed or implied, of the Regents of The University of Michigan. |
| 26 | */ |
| 27 | |
| 28 | #include <math.h> |
| 29 | |
| 30 | /** SVD 2x2. |
| 31 | |
| 32 | Computes singular values and vectors without squaring the input |
| 33 | matrix. With double precision math, results are accurate to about |
| 34 | 1E-16. |
| 35 | |
| 36 | U = [ cos(theta) -sin(theta) ] |
| 37 | [ sin(theta) cos(theta) ] |
| 38 | |
| 39 | S = [ e 0 ] |
| 40 | [ 0 f ] |
| 41 | |
| 42 | V = [ cos(phi) -sin(phi) ] |
| 43 | [ sin(phi) cos(phi) ] |
| 44 | |
| 45 | |
| 46 | Our strategy is basically to analytically multiply everything out |
| 47 | and then rearrange so that we can solve for theta, phi, e, and |
| 48 | f. (Derivation by ebolson@umich.edu 5/2016) |
| 49 | |
| 50 | V' = [ CP SP ] |
| 51 | [ -SP CP ] |
| 52 | |
| 53 | USV' = [ CT -ST ][ e*CP e*SP ] |
| 54 | [ ST CT ][ -f*SP f*CP ] |
| 55 | |
| 56 | = [e*CT*CP + f*ST*SP e*CT*SP - f*ST*CP ] |
| 57 | [e*ST*CP - f*SP*CT e*SP*ST + f*CP*CT ] |
| 58 | |
| 59 | A00+A11 = e*CT*CP + f*ST*SP + e*SP*ST + f*CP*CT |
| 60 | = e*(CP*CT + SP*ST) + f*(SP*ST + CP*CT) |
| 61 | = (e+f)(CP*CT + SP*ST) |
| 62 | B0 = (e+f)*cos(P-T) |
| 63 | |
| 64 | A00-A11 = e*CT*CP + f*ST*SP - e*SP*ST - f*CP*CT |
| 65 | = e*(CP*CT - SP*ST) - f*(-ST*SP + CP*CT) |
| 66 | = (e-f)(CP*CT - SP*ST) |
| 67 | B1 = (e-f)*cos(P+T) |
| 68 | |
| 69 | A01+A10 = e*CT*SP - f*ST*CP + e*ST*CP - f*SP*CT |
| 70 | = e(CT*SP + ST*CP) - f*(ST*CP + SP*CT) |
| 71 | = (e-f)*(CT*SP + ST*CP) |
| 72 | B2 = (e-f)*sin(P+T) |
| 73 | |
| 74 | A01-A10 = e*CT*SP - f*ST*CP - e*ST*CP + f*SP*CT |
| 75 | = e*(CT*SP - ST*CP) + f(SP*CT - ST*CP) |
| 76 | = (e+f)*(CT*SP - ST*CP) |
| 77 | B3 = (e+f)*sin(P-T) |
| 78 | |
| 79 | B0 = (e+f)*cos(P-T) |
| 80 | B1 = (e-f)*cos(P+T) |
| 81 | B2 = (e-f)*sin(P+T) |
| 82 | B3 = (e+f)*sin(P-T) |
| 83 | |
| 84 | B3/B0 = tan(P-T) |
| 85 | |
| 86 | B2/B1 = tan(P+T) |
| 87 | **/ |
| 88 | void svd22(const double A[4], double U[4], double S[2], double V[4]) |
| 89 | { |
| 90 | double A00 = A[0]; |
| 91 | double A01 = A[1]; |
| 92 | double A10 = A[2]; |
| 93 | double A11 = A[3]; |
| 94 | |
| 95 | double B0 = A00 + A11; |
| 96 | double B1 = A00 - A11; |
| 97 | double B2 = A01 + A10; |
| 98 | double B3 = A01 - A10; |
| 99 | |
| 100 | double PminusT = atan2(B3, B0); |
| 101 | double PplusT = atan2(B2, B1); |
| 102 | |
| 103 | double P = (PminusT + PplusT) / 2; |
| 104 | double T = (-PminusT + PplusT) / 2; |
| 105 | |
| 106 | double CP = cos(P), SP = sin(P); |
| 107 | double CT = cos(T), ST = sin(T); |
| 108 | |
| 109 | U[0] = CT; |
| 110 | U[1] = -ST; |
| 111 | U[2] = ST; |
| 112 | U[3] = CT; |
| 113 | |
| 114 | V[0] = CP; |
| 115 | V[1] = -SP; |
| 116 | V[2] = SP; |
| 117 | V[3] = CP; |
| 118 | |
| 119 | // C0 = e+f. There are two ways to compute C0; we pick the one |
| 120 | // that is better conditioned. |
| 121 | double CPmT = cos(P-T), SPmT = sin(P-T); |
| 122 | double C0 = 0; |
| 123 | if (fabs(CPmT) > fabs(SPmT)) |
| 124 | C0 = B0 / CPmT; |
| 125 | else |
| 126 | C0 = B3 / SPmT; |
| 127 | |
| 128 | // C1 = e-f. There are two ways to compute C1; we pick the one |
| 129 | // that is better conditioned. |
| 130 | double CPpT = cos(P+T), SPpT = sin(P+T); |
| 131 | double C1 = 0; |
| 132 | if (fabs(CPpT) > fabs(SPpT)) |
| 133 | C1 = B1 / CPpT; |
| 134 | else |
| 135 | C1 = B2 / SPpT; |
| 136 | |
| 137 | // e and f are the singular values |
| 138 | double e = (C0 + C1) / 2; |
| 139 | double f = (C0 - C1) / 2; |
| 140 | |
| 141 | if (e < 0) { |
| 142 | e = -e; |
| 143 | U[0] = -U[0]; |
| 144 | U[2] = -U[2]; |
| 145 | } |
| 146 | |
| 147 | if (f < 0) { |
| 148 | f = -f; |
| 149 | U[1] = -U[1]; |
| 150 | U[3] = -U[3]; |
| 151 | } |
| 152 | |
| 153 | // sort singular values. |
| 154 | if (e > f) { |
| 155 | // already in big-to-small order. |
| 156 | S[0] = e; |
| 157 | S[1] = f; |
| 158 | } else { |
| 159 | // Curiously, this code never seems to get invoked. Why is it |
| 160 | // that S[0] always ends up the dominant vector? However, |
| 161 | // this code has been tested (flipping the logic forces us to |
| 162 | // sort the singular values in ascending order). |
| 163 | // |
| 164 | // P = [ 0 1 ; 1 0 ] |
| 165 | // USV' = (UP)(PSP)(PV') |
| 166 | // = (UP)(PSP)(VP)' |
| 167 | // = (UP)(PSP)(P'V')' |
| 168 | S[0] = f; |
| 169 | S[1] = e; |
| 170 | |
| 171 | // exchange columns of U and V |
| 172 | double tmp[2]; |
| 173 | tmp[0] = U[0]; |
| 174 | tmp[1] = U[2]; |
| 175 | U[0] = U[1]; |
| 176 | U[2] = U[3]; |
| 177 | U[1] = tmp[0]; |
| 178 | U[3] = tmp[1]; |
| 179 | |
| 180 | tmp[0] = V[0]; |
| 181 | tmp[1] = V[2]; |
| 182 | V[0] = V[1]; |
| 183 | V[2] = V[3]; |
| 184 | V[1] = tmp[0]; |
| 185 | V[3] = tmp[1]; |
| 186 | } |
| 187 | |
| 188 | /* |
| 189 | double SM[4] = { S[0], 0, 0, S[1] }; |
| 190 | |
| 191 | doubles_print_mat(U, 2, 2, "%20.10g"); |
| 192 | doubles_print_mat(SM, 2, 2, "%20.10g"); |
| 193 | doubles_print_mat(V, 2, 2, "%20.10g"); |
| 194 | printf("A:\n"); |
| 195 | doubles_print_mat(A, 2, 2, "%20.10g"); |
| 196 | |
| 197 | double SVt[4]; |
| 198 | doubles_mat_ABt(SM, 2, 2, V, 2, 2, SVt, 2, 2); |
| 199 | double USVt[4]; |
| 200 | doubles_mat_AB(U, 2, 2, SVt, 2, 2, USVt, 2, 2); |
| 201 | |
| 202 | printf("USVt\n"); |
| 203 | doubles_print_mat(USVt, 2, 2, "%20.10g"); |
| 204 | |
| 205 | double diff[4]; |
| 206 | for (int i = 0; i < 4; i++) |
| 207 | diff[i] = A[i] - USVt[i]; |
| 208 | |
| 209 | printf("diff\n"); |
| 210 | doubles_print_mat(diff, 2, 2, "%20.10g"); |
| 211 | |
| 212 | */ |
| 213 | |
| 214 | } |
| 215 | |
| 216 | |
| 217 | // for the matrix [a b; b d] |
| 218 | void svd_sym_singular_values(double A00, double A01, double A11, |
| 219 | double *Lmin, double *Lmax) |
| 220 | { |
| 221 | double A10 = A01; |
| 222 | |
| 223 | double B0 = A00 + A11; |
| 224 | double B1 = A00 - A11; |
| 225 | double B2 = A01 + A10; |
| 226 | double B3 = A01 - A10; |
| 227 | |
| 228 | double PminusT = atan2(B3, B0); |
| 229 | double PplusT = atan2(B2, B1); |
| 230 | |
| 231 | double P = (PminusT + PplusT) / 2; |
| 232 | double T = (-PminusT + PplusT) / 2; |
| 233 | |
| 234 | // C0 = e+f. There are two ways to compute C0; we pick the one |
| 235 | // that is better conditioned. |
| 236 | double CPmT = cos(P-T), SPmT = sin(P-T); |
| 237 | double C0 = 0; |
| 238 | if (fabs(CPmT) > fabs(SPmT)) |
| 239 | C0 = B0 / CPmT; |
| 240 | else |
| 241 | C0 = B3 / SPmT; |
| 242 | |
| 243 | // C1 = e-f. There are two ways to compute C1; we pick the one |
| 244 | // that is better conditioned. |
| 245 | double CPpT = cos(P+T), SPpT = sin(P+T); |
| 246 | double C1 = 0; |
| 247 | if (fabs(CPpT) > fabs(SPpT)) |
| 248 | C1 = B1 / CPpT; |
| 249 | else |
| 250 | C1 = B2 / SPpT; |
| 251 | |
| 252 | // e and f are the singular values |
| 253 | double e = (C0 + C1) / 2; |
| 254 | double f = (C0 - C1) / 2; |
| 255 | |
| 256 | *Lmin = fmin(e, f); |
| 257 | *Lmax = fmax(e, f); |
| 258 | } |