Austin Schuh | 3333ec7 | 2022-12-29 16:21:06 -0800 | [diff] [blame^] | 1 | /* Copyright (C) 2013-2016, The Regents of The University of Michigan. |
| 2 | All rights reserved. |
| 3 | This software was developed in the APRIL Robotics Lab under the |
| 4 | direction of Edwin Olson, ebolson@umich.edu. This software may be |
| 5 | available under alternative licensing terms; contact the address above. |
| 6 | Redistribution and use in source and binary forms, with or without |
| 7 | modification, are permitted provided that the following conditions are met: |
| 8 | 1. Redistributions of source code must retain the above copyright notice, this |
| 9 | list of conditions and the following disclaimer. |
| 10 | 2. Redistributions in binary form must reproduce the above copyright notice, |
| 11 | this list of conditions and the following disclaimer in the documentation |
| 12 | and/or other materials provided with the distribution. |
| 13 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 14 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| 17 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 20 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | The views and conclusions contained in the software and documentation are those |
| 24 | of the authors and should not be interpreted as representing official policies, |
| 25 | either expressed or implied, of the Regents of The University of Michigan. |
| 26 | */ |
| 27 | |
| 28 | #include <assert.h> |
| 29 | #include <math.h> |
| 30 | #include <stdio.h> |
| 31 | #include <string.h> |
| 32 | |
| 33 | #include "g2d.h" |
| 34 | #include "common/math_util.h" |
| 35 | |
| 36 | #ifdef _WIN32 |
| 37 | static inline long int random(void) |
| 38 | { |
| 39 | return rand(); |
| 40 | } |
| 41 | #endif |
| 42 | |
| 43 | double g2d_distance(const double a[2], const double b[2]) |
| 44 | { |
| 45 | return sqrtf(sq(a[0]-b[0]) + sq(a[1]-b[1])); |
| 46 | } |
| 47 | |
| 48 | zarray_t *g2d_polygon_create_empty() |
| 49 | { |
| 50 | return zarray_create(sizeof(double[2])); |
| 51 | } |
| 52 | |
| 53 | void g2d_polygon_add(zarray_t *poly, double v[2]) |
| 54 | { |
| 55 | zarray_add(poly, v); |
| 56 | } |
| 57 | |
| 58 | zarray_t *g2d_polygon_create_data(double v[][2], int sz) |
| 59 | { |
| 60 | zarray_t *points = g2d_polygon_create_empty(); |
| 61 | |
| 62 | for (int i = 0; i < sz; i++) |
| 63 | g2d_polygon_add(points, v[i]); |
| 64 | |
| 65 | return points; |
| 66 | } |
| 67 | |
| 68 | zarray_t *g2d_polygon_create_zeros(int sz) |
| 69 | { |
| 70 | zarray_t *points = zarray_create(sizeof(double[2])); |
| 71 | |
| 72 | double z[2] = { 0, 0 }; |
| 73 | |
| 74 | for (int i = 0; i < sz; i++) |
| 75 | zarray_add(points, z); |
| 76 | |
| 77 | return points; |
| 78 | } |
| 79 | |
| 80 | void g2d_polygon_make_ccw(zarray_t *poly) |
| 81 | { |
| 82 | // Step one: we want the points in counter-clockwise order. |
| 83 | // If the points are in clockwise order, we'll reverse them. |
| 84 | double total_theta = 0; |
| 85 | double last_theta = 0; |
| 86 | |
| 87 | // Count the angle accumulated going around the polygon. If |
| 88 | // the sum is +2pi, it's CCW. Otherwise, we'll get -2pi. |
| 89 | int sz = zarray_size(poly); |
| 90 | |
| 91 | for (int i = 0; i <= sz; i++) { |
| 92 | double p0[2], p1[2]; |
| 93 | zarray_get(poly, i % sz, &p0); |
| 94 | zarray_get(poly, (i+1) % sz, &p1); |
| 95 | |
| 96 | double this_theta = atan2(p1[1]-p0[1], p1[0]-p0[0]); |
| 97 | |
| 98 | if (i > 0) { |
| 99 | double dtheta = mod2pi(this_theta-last_theta); |
| 100 | total_theta += dtheta; |
| 101 | } |
| 102 | |
| 103 | last_theta = this_theta; |
| 104 | } |
| 105 | |
| 106 | int ccw = (total_theta > 0); |
| 107 | |
| 108 | // reverse order if necessary. |
| 109 | if (!ccw) { |
| 110 | for (int i = 0; i < sz / 2; i++) { |
| 111 | double a[2], b[2]; |
| 112 | |
| 113 | zarray_get(poly, i, a); |
| 114 | zarray_get(poly, sz-1-i, b); |
| 115 | zarray_set(poly, i, b, NULL); |
| 116 | zarray_set(poly, sz-1-i, a, NULL); |
| 117 | } |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | int g2d_polygon_contains_point_ref(const zarray_t *poly, double q[2]) |
| 122 | { |
| 123 | // use winding. If the point is inside the polygon, we'll wrap |
| 124 | // around it (accumulating 6.28 radians). If we're outside the |
| 125 | // polygon, we'll accumulate zero. |
| 126 | int psz = zarray_size(poly); |
| 127 | |
| 128 | double acc_theta = 0; |
| 129 | |
| 130 | double last_theta; |
| 131 | |
| 132 | for (int i = 0; i <= psz; i++) { |
| 133 | double p[2]; |
| 134 | |
| 135 | zarray_get(poly, i % psz, &p); |
| 136 | |
| 137 | double this_theta = atan2(q[1]-p[1], q[0]-p[0]); |
| 138 | |
| 139 | if (i != 0) |
| 140 | acc_theta += mod2pi(this_theta - last_theta); |
| 141 | |
| 142 | last_theta = this_theta; |
| 143 | } |
| 144 | |
| 145 | return acc_theta > M_PI; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | // sort by x coordinate, ascending |
| 150 | static int g2d_convex_hull_sort(const void *_a, const void *_b) |
| 151 | { |
| 152 | double *a = (double*) _a; |
| 153 | double *b = (double*) _b; |
| 154 | |
| 155 | if (a[0] < b[0]) |
| 156 | return -1; |
| 157 | if (a[0] == b[0]) |
| 158 | return 0; |
| 159 | return 1; |
| 160 | } |
| 161 | */ |
| 162 | |
| 163 | /* |
| 164 | zarray_t *g2d_convex_hull2(const zarray_t *points) |
| 165 | { |
| 166 | zarray_t *hull = zarray_copy(points); |
| 167 | |
| 168 | zarray_sort(hull, g2d_convex_hull_sort); |
| 169 | |
| 170 | int hsz = zarray_size(hull); |
| 171 | int hout = 0; |
| 172 | |
| 173 | for (int hin = 1; hin < hsz; hin++) { |
| 174 | double *p; |
| 175 | zarray_get_volatile(hull, i, &p); |
| 176 | |
| 177 | // Everything to the right of hin is already convex. We now |
| 178 | // add one point, p, which begins "connected" by two |
| 179 | // (coincident) edges from the last right-most point to p. |
| 180 | double *last; |
| 181 | zarray_get_volatile(hull, hout, &last); |
| 182 | |
| 183 | // We now remove points from the convex hull by moving |
| 184 | } |
| 185 | |
| 186 | return hull; |
| 187 | } |
| 188 | */ |
| 189 | |
| 190 | // creates and returns a zarray(double[2]). The resulting polygon is |
| 191 | // CCW and implicitly closed. Unnecessary colinear points are omitted. |
| 192 | zarray_t *g2d_convex_hull(const zarray_t *points) |
| 193 | { |
| 194 | zarray_t *hull = zarray_create(sizeof(double[2])); |
| 195 | |
| 196 | // gift-wrap algorithm. |
| 197 | |
| 198 | // step 1: find left most point. |
| 199 | int insz = zarray_size(points); |
| 200 | |
| 201 | // must have at least 2 points. (XXX need 3?) |
| 202 | assert(insz >= 2); |
| 203 | |
| 204 | double *pleft = NULL; |
| 205 | for (int i = 0; i < insz; i++) { |
| 206 | double *p; |
| 207 | zarray_get_volatile(points, i, &p); |
| 208 | |
| 209 | if (pleft == NULL || p[0] < pleft[0]) |
| 210 | pleft = p; |
| 211 | } |
| 212 | |
| 213 | // cannot be NULL since there must be at least one point. |
| 214 | assert(pleft != NULL); |
| 215 | |
| 216 | zarray_add(hull, pleft); |
| 217 | |
| 218 | // step 2. gift wrap. Keep searching for points that make the |
| 219 | // smallest-angle left-hand turn. This implementation is carefully |
| 220 | // written to use only addition/subtraction/multiply. No division |
| 221 | // or sqrts. This guarantees exact results for integer-coordinate |
| 222 | // polygons (no rounding/precision problems). |
| 223 | double *p = pleft; |
| 224 | |
| 225 | while (1) { |
| 226 | assert(p != NULL); |
| 227 | |
| 228 | double *q = NULL; |
| 229 | double n0 = 0, n1 = 0; // the normal to the line (p, q) (not |
| 230 | // necessarily unit length). |
| 231 | |
| 232 | // Search for the point q for which the line (p,q) is most "to |
| 233 | // the right of" the other points. (i.e., every time we find a |
| 234 | // point that is to the right of our current line, we change |
| 235 | // lines.) |
| 236 | for (int i = 0; i < insz; i++) { |
| 237 | double *thisq; |
| 238 | zarray_get_volatile(points, i, &thisq); |
| 239 | |
| 240 | if (thisq == p) |
| 241 | continue; |
| 242 | |
| 243 | // the first time we find another point, we initialize our |
| 244 | // value of q, forming the line (p,q) |
| 245 | if (q == NULL) { |
| 246 | q = thisq; |
| 247 | n0 = q[1] - p[1]; |
| 248 | n1 = -q[0] + p[0]; |
| 249 | } else { |
| 250 | // we already have a line (p,q). is point thisq RIGHT OF line (p, q)? |
| 251 | double e0 = thisq[0] - p[0], e1 = thisq[1] - p[1]; |
| 252 | double dot = e0*n0 + e1*n1; |
| 253 | |
| 254 | if (dot > 0) { |
| 255 | // it is. change our line. |
| 256 | q = thisq; |
| 257 | n0 = q[1] - p[1]; |
| 258 | n1 = -q[0] + p[0]; |
| 259 | } |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | // we must have elected *some* line, so long as there are at |
| 264 | // least 2 points in the polygon. |
| 265 | assert(q != NULL); |
| 266 | |
| 267 | // loop completed? |
| 268 | if (q == pleft) |
| 269 | break; |
| 270 | |
| 271 | int colinear = 0; |
| 272 | |
| 273 | // is this new point colinear with the last two? |
| 274 | if (zarray_size(hull) > 1) { |
| 275 | double *o; |
| 276 | zarray_get_volatile(hull, zarray_size(hull) - 2, &o); |
| 277 | |
| 278 | double e0 = o[0] - p[0]; |
| 279 | double e1 = o[1] - p[1]; |
| 280 | |
| 281 | if (n0*e0 + n1*e1 == 0) |
| 282 | colinear = 1; |
| 283 | } |
| 284 | |
| 285 | // if it is colinear, overwrite the last one. |
| 286 | if (colinear) |
| 287 | zarray_set(hull, zarray_size(hull)-1, q, NULL); |
| 288 | else |
| 289 | zarray_add(hull, q); |
| 290 | |
| 291 | p = q; |
| 292 | } |
| 293 | |
| 294 | return hull; |
| 295 | } |
| 296 | |
| 297 | // Find point p on the boundary of poly that is closest to q. |
| 298 | void g2d_polygon_closest_boundary_point(const zarray_t *poly, const double q[2], double *p) |
| 299 | { |
| 300 | int psz = zarray_size(poly); |
| 301 | double min_dist = HUGE_VALF; |
| 302 | |
| 303 | for (int i = 0; i < psz; i++) { |
| 304 | double *p0, *p1; |
| 305 | |
| 306 | zarray_get_volatile(poly, i, &p0); |
| 307 | zarray_get_volatile(poly, (i+1) % psz, &p1); |
| 308 | |
| 309 | g2d_line_segment_t seg; |
| 310 | g2d_line_segment_init_from_points(&seg, p0, p1); |
| 311 | |
| 312 | double thisp[2]; |
| 313 | g2d_line_segment_closest_point(&seg, q, thisp); |
| 314 | |
| 315 | double dist = g2d_distance(q, thisp); |
| 316 | if (dist < min_dist) { |
| 317 | memcpy(p, thisp, sizeof(double[2])); |
| 318 | min_dist = dist; |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | int g2d_polygon_contains_point(const zarray_t *poly, double q[2]) |
| 324 | { |
| 325 | // use winding. If the point is inside the polygon, we'll wrap |
| 326 | // around it (accumulating 6.28 radians). If we're outside the |
| 327 | // polygon, we'll accumulate zero. |
| 328 | int psz = zarray_size(poly); |
| 329 | assert(psz > 0); |
| 330 | |
| 331 | int last_quadrant; |
| 332 | int quad_acc = 0; |
| 333 | |
| 334 | for (int i = 0; i <= psz; i++) { |
| 335 | double *p; |
| 336 | |
| 337 | zarray_get_volatile(poly, i % psz, &p); |
| 338 | |
| 339 | // p[0] < q[0] p[1] < q[1] quadrant |
| 340 | // 0 0 0 |
| 341 | // 0 1 3 |
| 342 | // 1 0 1 |
| 343 | // 1 1 2 |
| 344 | |
| 345 | // p[1] < q[1] p[0] < q[0] quadrant |
| 346 | // 0 0 0 |
| 347 | // 0 1 1 |
| 348 | // 1 0 3 |
| 349 | // 1 1 2 |
| 350 | |
| 351 | int quadrant; |
| 352 | if (p[0] < q[0]) |
| 353 | quadrant = (p[1] < q[1]) ? 2 : 1; |
| 354 | else |
| 355 | quadrant = (p[1] < q[1]) ? 3 : 0; |
| 356 | |
| 357 | if (i > 0) { |
| 358 | int dquadrant = quadrant - last_quadrant; |
| 359 | |
| 360 | // encourage a jump table by mapping to small positive integers. |
| 361 | switch (dquadrant) { |
| 362 | case -3: |
| 363 | case 1: |
| 364 | quad_acc ++; |
| 365 | break; |
| 366 | case -1: |
| 367 | case 3: |
| 368 | quad_acc --; |
| 369 | break; |
| 370 | case 0: |
| 371 | break; |
| 372 | case -2: |
| 373 | case 2: |
| 374 | { |
| 375 | // get the previous point. |
| 376 | double *p0; |
| 377 | zarray_get_volatile(poly, i-1, &p0); |
| 378 | |
| 379 | // Consider the points p0 and p (the points around the |
| 380 | //polygon that we are tracing) and the query point q. |
| 381 | // |
| 382 | // If we've moved diagonally across quadrants, we want |
| 383 | // to measure whether we have rotated +PI radians or |
| 384 | // -PI radians. We can test this by computing the dot |
| 385 | // product of vector (p0-q) with the vector |
| 386 | // perpendicular to vector (p-q) |
| 387 | double nx = p[1] - q[1]; |
| 388 | double ny = -p[0] + q[0]; |
| 389 | |
| 390 | double dot = nx*(p0[0]-q[0]) + ny*(p0[1]-q[1]); |
| 391 | if (dot < 0) |
| 392 | quad_acc -= 2; |
| 393 | else |
| 394 | quad_acc += 2; |
| 395 | |
| 396 | break; |
| 397 | } |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | last_quadrant = quadrant; |
| 402 | } |
| 403 | |
| 404 | int v = (quad_acc >= 2) || (quad_acc <= -2); |
| 405 | |
| 406 | #if 0 |
| 407 | if (v != g2d_polygon_contains_point_ref(poly, q)) { |
| 408 | printf("FAILURE %d %d\n", v, quad_acc); |
| 409 | exit(-1); |
| 410 | } |
| 411 | #endif |
| 412 | |
| 413 | return v; |
| 414 | } |
| 415 | |
| 416 | void g2d_line_init_from_points(g2d_line_t *line, const double p0[2], const double p1[2]) |
| 417 | { |
| 418 | line->p[0] = p0[0]; |
| 419 | line->p[1] = p0[1]; |
| 420 | line->u[0] = p1[0]-p0[0]; |
| 421 | line->u[1] = p1[1]-p0[1]; |
| 422 | double mag = sqrtf(sq(line->u[0]) + sq(line->u[1])); |
| 423 | |
| 424 | line->u[0] /= mag; |
| 425 | line->u[1] /= mag; |
| 426 | } |
| 427 | |
| 428 | double g2d_line_get_coordinate(const g2d_line_t *line, const double q[2]) |
| 429 | { |
| 430 | return (q[0]-line->p[0])*line->u[0] + (q[1]-line->p[1])*line->u[1]; |
| 431 | } |
| 432 | |
| 433 | // Compute intersection of two line segments. If they intersect, |
| 434 | // result is stored in p and 1 is returned. Otherwise, zero is |
| 435 | // returned. p may be NULL. |
| 436 | int g2d_line_intersect_line(const g2d_line_t *linea, const g2d_line_t *lineb, double *p) |
| 437 | { |
| 438 | // this implementation is many times faster than the original, |
| 439 | // mostly due to avoiding a general-purpose LU decomposition in |
| 440 | // Matrix.inverse(). |
| 441 | double m00, m01, m10, m11; |
| 442 | double i00, i01; |
| 443 | double b00, b10; |
| 444 | |
| 445 | m00 = linea->u[0]; |
| 446 | m01= -lineb->u[0]; |
| 447 | m10 = linea->u[1]; |
| 448 | m11= -lineb->u[1]; |
| 449 | |
| 450 | // determinant of m |
| 451 | double det = m00*m11-m01*m10; |
| 452 | |
| 453 | // parallel lines? |
| 454 | if (fabs(det) < 0.00000001) |
| 455 | return 0; |
| 456 | |
| 457 | // inverse of m |
| 458 | i00 = m11/det; |
| 459 | i01 = -m01/det; |
| 460 | |
| 461 | b00 = lineb->p[0] - linea->p[0]; |
| 462 | b10 = lineb->p[1] - linea->p[1]; |
| 463 | |
| 464 | double x00; //, x10; |
| 465 | x00 = i00*b00+i01*b10; |
| 466 | |
| 467 | if (p != NULL) { |
| 468 | p[0] = linea->u[0]*x00 + linea->p[0]; |
| 469 | p[1] = linea->u[1]*x00 + linea->p[1]; |
| 470 | } |
| 471 | |
| 472 | return 1; |
| 473 | } |
| 474 | |
| 475 | |
| 476 | void g2d_line_segment_init_from_points(g2d_line_segment_t *seg, const double p0[2], const double p1[2]) |
| 477 | { |
| 478 | g2d_line_init_from_points(&seg->line, p0, p1); |
| 479 | seg->p1[0] = p1[0]; |
| 480 | seg->p1[1] = p1[1]; |
| 481 | } |
| 482 | |
| 483 | // Find the point p on segment seg that is closest to point q. |
| 484 | void g2d_line_segment_closest_point(const g2d_line_segment_t *seg, const double *q, double *p) |
| 485 | { |
| 486 | double a = g2d_line_get_coordinate(&seg->line, seg->line.p); |
| 487 | double b = g2d_line_get_coordinate(&seg->line, seg->p1); |
| 488 | double c = g2d_line_get_coordinate(&seg->line, q); |
| 489 | |
| 490 | if (a < b) |
| 491 | c = dclamp(c, a, b); |
| 492 | else |
| 493 | c = dclamp(c, b, a); |
| 494 | |
| 495 | p[0] = seg->line.p[0] + c * seg->line.u[0]; |
| 496 | p[1] = seg->line.p[1] + c * seg->line.u[1]; |
| 497 | } |
| 498 | |
| 499 | // Compute intersection of two line segments. If they intersect, |
| 500 | // result is stored in p and 1 is returned. Otherwise, zero is |
| 501 | // returned. p may be NULL. |
| 502 | int g2d_line_segment_intersect_segment(const g2d_line_segment_t *sega, const g2d_line_segment_t *segb, double *p) |
| 503 | { |
| 504 | double tmp[2]; |
| 505 | |
| 506 | if (!g2d_line_intersect_line(&sega->line, &segb->line, tmp)) |
| 507 | return 0; |
| 508 | |
| 509 | double a = g2d_line_get_coordinate(&sega->line, sega->line.p); |
| 510 | double b = g2d_line_get_coordinate(&sega->line, sega->p1); |
| 511 | double c = g2d_line_get_coordinate(&sega->line, tmp); |
| 512 | |
| 513 | // does intersection lie on the first line? |
| 514 | if ((c<a && c<b) || (c>a && c>b)) |
| 515 | return 0; |
| 516 | |
| 517 | a = g2d_line_get_coordinate(&segb->line, segb->line.p); |
| 518 | b = g2d_line_get_coordinate(&segb->line, segb->p1); |
| 519 | c = g2d_line_get_coordinate(&segb->line, tmp); |
| 520 | |
| 521 | // does intersection lie on second line? |
| 522 | if ((c<a && c<b) || (c>a && c>b)) |
| 523 | return 0; |
| 524 | |
| 525 | if (p != NULL) { |
| 526 | p[0] = tmp[0]; |
| 527 | p[1] = tmp[1]; |
| 528 | } |
| 529 | |
| 530 | return 1; |
| 531 | } |
| 532 | |
| 533 | // Compute intersection of a line segment and a line. If they |
| 534 | // intersect, result is stored in p and 1 is returned. Otherwise, zero |
| 535 | // is returned. p may be NULL. |
| 536 | int g2d_line_segment_intersect_line(const g2d_line_segment_t *seg, const g2d_line_t *line, double *p) |
| 537 | { |
| 538 | double tmp[2]; |
| 539 | |
| 540 | if (!g2d_line_intersect_line(&seg->line, line, tmp)) |
| 541 | return 0; |
| 542 | |
| 543 | double a = g2d_line_get_coordinate(&seg->line, seg->line.p); |
| 544 | double b = g2d_line_get_coordinate(&seg->line, seg->p1); |
| 545 | double c = g2d_line_get_coordinate(&seg->line, tmp); |
| 546 | |
| 547 | // does intersection lie on the first line? |
| 548 | if ((c<a && c<b) || (c>a && c>b)) |
| 549 | return 0; |
| 550 | |
| 551 | if (p != NULL) { |
| 552 | p[0] = tmp[0]; |
| 553 | p[1] = tmp[1]; |
| 554 | } |
| 555 | |
| 556 | return 1; |
| 557 | } |
| 558 | |
| 559 | // do the edges of polya and polyb collide? (Does NOT test for containment). |
| 560 | int g2d_polygon_intersects_polygon(const zarray_t *polya, const zarray_t *polyb) |
| 561 | { |
| 562 | // do any of the line segments collide? If so, the answer is no. |
| 563 | |
| 564 | // dumb N^2 method. |
| 565 | for (int ia = 0; ia < zarray_size(polya); ia++) { |
| 566 | double pa0[2], pa1[2]; |
| 567 | zarray_get(polya, ia, pa0); |
| 568 | zarray_get(polya, (ia+1)%zarray_size(polya), pa1); |
| 569 | |
| 570 | g2d_line_segment_t sega; |
| 571 | g2d_line_segment_init_from_points(&sega, pa0, pa1); |
| 572 | |
| 573 | for (int ib = 0; ib < zarray_size(polyb); ib++) { |
| 574 | double pb0[2], pb1[2]; |
| 575 | zarray_get(polyb, ib, pb0); |
| 576 | zarray_get(polyb, (ib+1)%zarray_size(polyb), pb1); |
| 577 | |
| 578 | g2d_line_segment_t segb; |
| 579 | g2d_line_segment_init_from_points(&segb, pb0, pb1); |
| 580 | |
| 581 | if (g2d_line_segment_intersect_segment(&sega, &segb, NULL)) |
| 582 | return 1; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | return 0; |
| 587 | } |
| 588 | |
| 589 | // does polya completely contain polyb? |
| 590 | int g2d_polygon_contains_polygon(const zarray_t *polya, const zarray_t *polyb) |
| 591 | { |
| 592 | // do any of the line segments collide? If so, the answer is no. |
| 593 | if (g2d_polygon_intersects_polygon(polya, polyb)) |
| 594 | return 0; |
| 595 | |
| 596 | // if none of the edges cross, then the polygon is either fully |
| 597 | // contained or fully outside. |
| 598 | double p[2]; |
| 599 | zarray_get(polyb, 0, p); |
| 600 | |
| 601 | return g2d_polygon_contains_point(polya, p); |
| 602 | } |
| 603 | |
| 604 | // compute a point that is inside the polygon. (It may not be *far* inside though) |
| 605 | void g2d_polygon_get_interior_point(const zarray_t *poly, double *p) |
| 606 | { |
| 607 | // take the first three points, which form a triangle. Find the middle point |
| 608 | double a[2], b[2], c[2]; |
| 609 | |
| 610 | zarray_get(poly, 0, a); |
| 611 | zarray_get(poly, 1, b); |
| 612 | zarray_get(poly, 2, c); |
| 613 | |
| 614 | p[0] = (a[0]+b[0]+c[0])/3; |
| 615 | p[1] = (a[1]+b[1]+c[1])/3; |
| 616 | } |
| 617 | |
| 618 | int g2d_polygon_overlaps_polygon(const zarray_t *polya, const zarray_t *polyb) |
| 619 | { |
| 620 | // do any of the line segments collide? If so, the answer is yes. |
| 621 | if (g2d_polygon_intersects_polygon(polya, polyb)) |
| 622 | return 1; |
| 623 | |
| 624 | // if none of the edges cross, then the polygon is either fully |
| 625 | // contained or fully outside. |
| 626 | double p[2]; |
| 627 | g2d_polygon_get_interior_point(polyb, p); |
| 628 | |
| 629 | if (g2d_polygon_contains_point(polya, p)) |
| 630 | return 1; |
| 631 | |
| 632 | g2d_polygon_get_interior_point(polya, p); |
| 633 | |
| 634 | if (g2d_polygon_contains_point(polyb, p)) |
| 635 | return 1; |
| 636 | |
| 637 | return 0; |
| 638 | } |
| 639 | |
| 640 | static int double_sort_up(const void *_a, const void *_b) |
| 641 | { |
| 642 | double a = *((double*) _a); |
| 643 | double b = *((double*) _b); |
| 644 | |
| 645 | if (a < b) |
| 646 | return -1; |
| 647 | |
| 648 | if (a == b) |
| 649 | return 0; |
| 650 | |
| 651 | return 1; |
| 652 | } |
| 653 | |
| 654 | // Compute the crossings of the polygon along line y, storing them in |
| 655 | // the array x. X must be allocated to be at least as long as |
| 656 | // zarray_size(poly). X will be sorted, ready for |
| 657 | // rasterization. Returns the number of intersections (and elements |
| 658 | // written to x). |
| 659 | /* |
| 660 | To rasterize, do something like this: |
| 661 | |
| 662 | double res = 0.099; |
| 663 | for (double y = y0; y < y1; y += res) { |
| 664 | double xs[zarray_size(poly)]; |
| 665 | |
| 666 | int xsz = g2d_polygon_rasterize(poly, y, xs); |
| 667 | int xpos = 0; |
| 668 | int inout = 0; // start off "out" |
| 669 | |
| 670 | for (double x = x0; x < x1; x += res) { |
| 671 | while (x > xs[xpos] && xpos < xsz) { |
| 672 | xpos++; |
| 673 | inout ^= 1; |
| 674 | } |
| 675 | |
| 676 | if (inout) |
| 677 | printf("y"); |
| 678 | else |
| 679 | printf(" "); |
| 680 | } |
| 681 | printf("\n"); |
| 682 | */ |
| 683 | |
| 684 | // returns the number of x intercepts |
| 685 | int g2d_polygon_rasterize(const zarray_t *poly, double y, double *x) |
| 686 | { |
| 687 | int sz = zarray_size(poly); |
| 688 | |
| 689 | g2d_line_t line; |
| 690 | if (1) { |
| 691 | double p0[2] = { 0, y }; |
| 692 | double p1[2] = { 1, y }; |
| 693 | |
| 694 | g2d_line_init_from_points(&line, p0, p1); |
| 695 | } |
| 696 | |
| 697 | int xpos = 0; |
| 698 | |
| 699 | for (int i = 0; i < sz; i++) { |
| 700 | g2d_line_segment_t seg; |
| 701 | double *p0, *p1; |
| 702 | zarray_get_volatile(poly, i, &p0); |
| 703 | zarray_get_volatile(poly, (i+1)%sz, &p1); |
| 704 | |
| 705 | g2d_line_segment_init_from_points(&seg, p0, p1); |
| 706 | |
| 707 | double q[2]; |
| 708 | if (g2d_line_segment_intersect_line(&seg, &line, q)) |
| 709 | x[xpos++] = q[0]; |
| 710 | } |
| 711 | |
| 712 | qsort(x, xpos, sizeof(double), double_sort_up); |
| 713 | |
| 714 | return xpos; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | /---(1,5) |
| 719 | (-2,4)-/ | |
| 720 | \ | |
| 721 | \ (1,2)--(2,2)\ |
| 722 | \ \ |
| 723 | \ \ |
| 724 | (0,0)------------------(4,0) |
| 725 | */ |
| 726 | #if 0 |
| 727 | |
| 728 | #include "timeprofile.h" |
| 729 | |
| 730 | int main(int argc, char *argv[]) |
| 731 | { |
| 732 | timeprofile_t *tp = timeprofile_create(); |
| 733 | |
| 734 | zarray_t *polya = g2d_polygon_create_data((double[][2]) { |
| 735 | { 0, 0}, |
| 736 | { 4, 0}, |
| 737 | { 2, 2}, |
| 738 | { 1, 2}, |
| 739 | { 1, 5}, |
| 740 | { -2,4} }, 6); |
| 741 | |
| 742 | zarray_t *polyb = g2d_polygon_create_data((double[][2]) { |
| 743 | { .1, .1}, |
| 744 | { .5, .1}, |
| 745 | { .1, .5 } }, 3); |
| 746 | |
| 747 | zarray_t *polyc = g2d_polygon_create_data((double[][2]) { |
| 748 | { 3, 0}, |
| 749 | { 5, 0}, |
| 750 | { 5, 1} }, 3); |
| 751 | |
| 752 | zarray_t *polyd = g2d_polygon_create_data((double[][2]) { |
| 753 | { 5, 5}, |
| 754 | { 6, 6}, |
| 755 | { 5, 6} }, 3); |
| 756 | |
| 757 | /* |
| 758 | 5 L---K |
| 759 | 4 |I--J |
| 760 | 3 |H-G |
| 761 | 2 |E-F |
| 762 | 1 |D--C |
| 763 | 0 A---B |
| 764 | 01234 |
| 765 | */ |
| 766 | zarray_t *polyE = g2d_polygon_create_data((double[][2]) { |
| 767 | {0,0}, {4,0}, {4, 1}, {1,1}, |
| 768 | {1,2}, {3,2}, {3,3}, {1,3}, |
| 769 | {1,4}, {4,4}, {4,5}, {0,5}}, 12); |
| 770 | |
| 771 | srand(0); |
| 772 | |
| 773 | timeprofile_stamp(tp, "begin"); |
| 774 | |
| 775 | if (1) { |
| 776 | int niters = 100000; |
| 777 | |
| 778 | for (int i = 0; i < niters; i++) { |
| 779 | double q[2]; |
| 780 | q[0] = 10.0f * random() / RAND_MAX - 2; |
| 781 | q[1] = 10.0f * random() / RAND_MAX - 2; |
| 782 | |
| 783 | g2d_polygon_contains_point(polyE, q); |
| 784 | } |
| 785 | |
| 786 | timeprofile_stamp(tp, "fast"); |
| 787 | |
| 788 | for (int i = 0; i < niters; i++) { |
| 789 | double q[2]; |
| 790 | q[0] = 10.0f * random() / RAND_MAX - 2; |
| 791 | q[1] = 10.0f * random() / RAND_MAX - 2; |
| 792 | |
| 793 | g2d_polygon_contains_point_ref(polyE, q); |
| 794 | } |
| 795 | |
| 796 | timeprofile_stamp(tp, "slow"); |
| 797 | |
| 798 | for (int i = 0; i < niters; i++) { |
| 799 | double q[2]; |
| 800 | q[0] = 10.0f * random() / RAND_MAX - 2; |
| 801 | q[1] = 10.0f * random() / RAND_MAX - 2; |
| 802 | |
| 803 | int v0 = g2d_polygon_contains_point(polyE, q); |
| 804 | int v1 = g2d_polygon_contains_point_ref(polyE, q); |
| 805 | assert(v0 == v1); |
| 806 | } |
| 807 | |
| 808 | timeprofile_stamp(tp, "both"); |
| 809 | timeprofile_display(tp); |
| 810 | } |
| 811 | |
| 812 | if (1) { |
| 813 | zarray_t *poly = polyE; |
| 814 | |
| 815 | double res = 0.399; |
| 816 | for (double y = 5.2; y >= -.5; y -= res) { |
| 817 | double xs[zarray_size(poly)]; |
| 818 | |
| 819 | int xsz = g2d_polygon_rasterize(poly, y, xs); |
| 820 | int xpos = 0; |
| 821 | int inout = 0; // start off "out" |
| 822 | for (double x = -3; x < 6; x += res) { |
| 823 | while (x > xs[xpos] && xpos < xsz) { |
| 824 | xpos++; |
| 825 | inout ^= 1; |
| 826 | } |
| 827 | |
| 828 | if (inout) |
| 829 | printf("y"); |
| 830 | else |
| 831 | printf(" "); |
| 832 | } |
| 833 | printf("\n"); |
| 834 | |
| 835 | for (double x = -3; x < 6; x += res) { |
| 836 | double q[2] = {x, y}; |
| 837 | if (g2d_polygon_contains_point(poly, q)) |
| 838 | printf("X"); |
| 839 | else |
| 840 | printf(" "); |
| 841 | } |
| 842 | printf("\n"); |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | |
| 847 | |
| 848 | /* |
| 849 | // CW order |
| 850 | double p[][2] = { { 0, 0}, |
| 851 | { -2, 4}, |
| 852 | {1, 5}, |
| 853 | {1, 2}, |
| 854 | {2, 2}, |
| 855 | {4, 0} }; |
| 856 | */ |
| 857 | |
| 858 | double q[2] = { 10, 10 }; |
| 859 | printf("0==%d\n", g2d_polygon_contains_point(polya, q)); |
| 860 | |
| 861 | q[0] = 1; q[1] = 1; |
| 862 | printf("1==%d\n", g2d_polygon_contains_point(polya, q)); |
| 863 | |
| 864 | q[0] = 3; q[1] = .5; |
| 865 | printf("1==%d\n", g2d_polygon_contains_point(polya, q)); |
| 866 | |
| 867 | q[0] = 1.2; q[1] = 2.1; |
| 868 | printf("0==%d\n", g2d_polygon_contains_point(polya, q)); |
| 869 | |
| 870 | printf("0==%d\n", g2d_polygon_contains_polygon(polya, polyb)); |
| 871 | |
| 872 | printf("0==%d\n", g2d_polygon_contains_polygon(polya, polyc)); |
| 873 | |
| 874 | printf("0==%d\n", g2d_polygon_contains_polygon(polya, polyd)); |
| 875 | |
| 876 | //////////////////////////////////////////////////////// |
| 877 | // Test convex hull |
| 878 | if (1) { |
| 879 | zarray_t *hull = g2d_convex_hull(polyE); |
| 880 | |
| 881 | for (int k = 0; k < zarray_size(hull); k++) { |
| 882 | double *h; |
| 883 | zarray_get_volatile(hull, k, &h); |
| 884 | |
| 885 | printf("%15f, %15f\n", h[0], h[1]); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | for (int i = 0; i < 100000; i++) { |
| 890 | zarray_t *points = zarray_create(sizeof(double[2])); |
| 891 | |
| 892 | for (int j = 0; j < 100; j++) { |
| 893 | double q[2]; |
| 894 | q[0] = 10.0f * random() / RAND_MAX - 2; |
| 895 | q[1] = 10.0f * random() / RAND_MAX - 2; |
| 896 | |
| 897 | zarray_add(points, q); |
| 898 | } |
| 899 | |
| 900 | zarray_t *hull = g2d_convex_hull(points); |
| 901 | for (int j = 0; j < zarray_size(points); j++) { |
| 902 | double *q; |
| 903 | zarray_get_volatile(points, j, &q); |
| 904 | |
| 905 | int on_edge; |
| 906 | |
| 907 | double p[2]; |
| 908 | g2d_polygon_closest_boundary_point(hull, q, p); |
| 909 | if (g2d_distance(q, p) < .00001) |
| 910 | on_edge = 1; |
| 911 | |
| 912 | assert(on_edge || g2d_polygon_contains_point(hull, q)); |
| 913 | } |
| 914 | |
| 915 | zarray_destroy(hull); |
| 916 | zarray_destroy(points); |
| 917 | } |
| 918 | } |
| 919 | #endif |