blob: 59c632928f30d21487f6d3bc960200d679a10d52 [file] [log] [blame]
Brian Silverman32ed54e2018-08-04 23:37:28 -07001[section:triangular_dist Triangular Distribution]
2
3
4``#include <boost/math/distributions/triangular.hpp>``
5
6 namespace boost{ namespace math{
7 template <class RealType = double,
8 class ``__Policy`` = ``__policy_class`` >
9 class triangular_distribution;
10
11 typedef triangular_distribution<> triangular;
12
13 template <class RealType, class ``__Policy``>
14 class triangular_distribution
15 {
16 public:
17 typedef RealType value_type;
18 typedef Policy policy_type;
19
20 triangular_distribution(RealType lower = -1, RealType mode = 0) RealType upper = 1); // Constructor.
21 : m_lower(lower), m_mode(mode), m_upper(upper) // Default is -1, 0, +1 symmetric triangular distribution.
22 // Accessor functions.
23 RealType lower()const;
24 RealType mode()const;
25 RealType upper()const;
26 }; // class triangular_distribution
27
28 }} // namespaces
29
30The [@http://en.wikipedia.org/wiki/Triangular_distribution triangular distribution]
31is a [@http://en.wikipedia.org/wiki/Continuous_distribution continuous]
32[@http://en.wikipedia.org/wiki/Probability_distribution probability distribution]
33with a lower limit a,
34[@http://en.wikipedia.org/wiki/Mode_%28statistics%29 mode c],
35and upper limit b.
36
37The triangular distribution is often used where the distribution is only vaguely known,
38but, like the [@http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 uniform distribution],
39upper and limits are 'known', but a 'best guess', the mode or center point, is also added.
40It has been recommended as a
41[@http://www.worldscibooks.com/mathematics/etextbook/5720/5720_chap1.pdf proxy for the beta distribution.]
42The distribution is used in business decision making and project planning.
43
44The [@http://en.wikipedia.org/wiki/Triangular_distribution triangular distribution]
45is a distribution with the
46[@http://en.wikipedia.org/wiki/Probability_density_function probability density function]:
47
48__spaces f(x) =
49
50* 2(x-a)/(b-a) (c-a) for a <= x <= c
51
52* 2(b-x)/(b-a)(b-c) for c < x <= b
53
54Parameter ['a] (lower) can be any finite value.
55Parameter ['b] (upper) can be any finite value > a (lower).
56Parameter ['c] (mode) a <= c <= b. This is the most probable value.
57
58The [@http://en.wikipedia.org/wiki/Random_variate random variate] x must also be finite, and is supported lower <= x <= upper.
59
60The triangular distribution may be appropriate when an assumption of a normal distribution
61is unjustified because uncertainty is caused by rounding and quantization from analog to digital conversion.
62Upper and lower limits are known, and the most probable value lies midway.
63
64The distribution simplifies when the 'best guess' is either the lower or upper limit - a 90 degree angle triangle.
65The 001 triangular distribution which expresses an estimate that the lowest value is the most likely;
66for example, you believe that the next-day quoted delivery date is most likely
67(knowing that a quicker delivery is impossible - the postman only comes once a day),
68and that longer delays are decreasingly likely,
69and delivery is assumed to never take more than your upper limit.
70
71The following graph illustrates how the
72[@http://en.wikipedia.org/wiki/Probability_density_function probability density function PDF]
73varies with the various parameters:
74
75[graph triangular_pdf]
76
77and cumulative distribution function
78
79[graph triangular_cdf]
80
81[h4 Member Functions]
82
83 triangular_distribution(RealType lower = 0, RealType mode = 0 RealType upper = 1);
84
85Constructs a [@http://en.wikipedia.org/wiki/triangular_distribution triangular distribution]
86with lower /lower/ (a) and upper /upper/ (b).
87
88Requires that the /lower/, /mode/ and /upper/ parameters are all finite,
89otherwise calls __domain_error.
90
91[warning These constructors are slightly different from the analogs provided by __Mathworld
92[@http://reference.wolfram.com/language/ref/TriangularDistribution.html Triangular distribution],
93where
94
95[^TriangularDistribution\[{min, max}\]] represents a [*symmetric] triangular statistical distribution giving values between min and max.[br]
96[^TriangularDistribution\[\]] represents a [*symmetric] triangular statistical distribution giving values between 0 and 1.[br]
97[^TriangularDistribution\[{min, max}, c\]] represents a triangular distribution with mode at c (usually [*asymmetric]).[br]
98
99So, for example, to compute a variance using __WolframAlpha, use
100[^N\[variance\[TriangularDistribution{1, +2}\], 50\]]
101]
102
103The parameters of a distribution can be obtained using these member functions:
104
105 RealType lower()const;
106
107Returns the ['lower] parameter of this distribution (default -1).
108
109 RealType mode()const;
110
111Returns the ['mode] parameter of this distribution (default 0).
112
113 RealType upper()const;
114
115Returns the ['upper] parameter of this distribution (default+1).
116
117[h4 Non-member Accessors]
118
119All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions] that are generic to all
120distributions are supported: __usual_accessors.
121
122The domain of the random variable is \lower\ to \upper\,
123and the supported range is lower <= x <= upper.
124
125[h4 Accuracy]
126
127The triangular distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two,
128except quantiles with arguments nearing the extremes of zero and unity.
129
130[h4 Implementation]
131
132In the following table, a is the /lower/ parameter of the distribution,
133c is the /mode/ parameter,
134b is the /upper/ parameter,
135/x/ is the random variate, /p/ is the probability and /q = 1-p/.
136
137[table
138[[Function][Implementation Notes]]
139[[pdf][Using the relation: pdf = 0 for x < mode, 2(x-a)\/(b-a)(c-a) else 2*(b-x)\/((b-a)(b-c))]]
140[[cdf][Using the relation: cdf = 0 for x < mode (x-a)[super 2]\/((b-a)(c-a)) else 1 - (b-x)[super 2]\/((b-a)(b-c))]]
141[[cdf complement][Using the relation: q = 1 - p ]]
142[[quantile][let p0 = (c-a)\/(b-a) the point of inflection on the cdf,
143then given probability p and q = 1-p:
144
145x = sqrt((b-a)(c-a)p) + a ; for p < p0
146
147x = c ; for p == p0
148
149x = b - sqrt((b-a)(b-c)q) ; for p > p0
150
151(See [@../../../../boost/math/distributions/triangular.hpp /boost/math/distributions/triangular.hpp] for details.)]]
152[[quantile from the complement][As quantile (See [@../../../../boost/math/distributions/triangular.hpp /boost/math/distributions/triangular.hpp] for details.)]]
153[[mean][(a + b + 3) \/ 3 ]]
154[[variance][(a[super 2]+b[super 2]+c[super 2] - ab - ac - bc)\/18]]
155[[mode][c]]
156[[skewness][(See [@../../../../boost/math/distributions/triangular.hpp /boost/math/distributions/triangular.hpp] for details). ]]
157[[kurtosis][12\/5]]
158[[kurtosis excess][-3\/5]]
159]
160
161Some 'known good' test values were obtained using __WolframAlpha.
162
163[h4 References]
164
165* [@http://en.wikipedia.org/wiki/Triangular_distribution Wikpedia triangular distribution]
166* [@http://mathworld.wolfram.com/TriangularDistribution.html Weisstein, Eric W. "Triangular Distribution." From MathWorld--A Wolfram Web Resource.]
167* Evans, M.; Hastings, N.; and Peacock, B. "Triangular Distribution." Ch. 40 in Statistical Distributions, 3rd ed. New York: Wiley, pp. 187-188, 2000, ISBN - 0471371246.
168* [@http://www.measurement.sk/2002/S1/Wimmer2.pdf Gejza Wimmer, Viktor Witkovsky and Tomas Duby,
169Measurement Science Review, Volume 2, Section 1, 2002, Proper Rounding Of The Measurement Results Under The Assumption Of Triangular Distribution.]
170
171[endsect][/section:triangular_dist triangular]
172
173[/
174 Copyright 2006 John Maddock and Paul A. Bristow.
175 Distributed under the Boost Software License, Version 1.0.
176 (See accompanying file LICENSE_1_0.txt or copy at
177 http://www.boost.org/LICENSE_1_0.txt).
178]
179