blob: 5b940bf3235ca02ad5a097f572d3a1fbf9f30b72 [file] [log] [blame]
Austin Schuh8c794d52019-03-03 21:17:37 -08001/*
2 #
3 # File : image_registration2d.cpp
4 # ( C++ source file )
5 #
6 # Description : Compute a motion field between two images,
7 # with a multiscale and variational algorithm.
8 # This file is a part of the CImg Library project.
9 # ( http://cimg.eu )
10 #
11 # Copyright : David Tschumperle
12 # ( http://tschumperle.users.greyc.fr/ )
13 #
14 # License : CeCILL v2.0
15 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
16 #
17 # This software is governed by the CeCILL license under French law and
18 # abiding by the rules of distribution of free software. You can use,
19 # modify and/ or redistribute the software under the terms of the CeCILL
20 # license as circulated by CEA, CNRS and INRIA at the following URL
21 # "http://www.cecill.info".
22 #
23 # As a counterpart to the access to the source code and rights to copy,
24 # modify and redistribute granted by the license, users are provided only
25 # with a limited warranty and the software's author, the holder of the
26 # economic rights, and the successive licensors have only limited
27 # liability.
28 #
29 # In this respect, the user's attention is drawn to the risks associated
30 # with loading, using, modifying and/or developing or reproducing the
31 # software by the user in light of its specific status of free software,
32 # that may mean that it is complicated to manipulate, and that also
33 # therefore means that it is reserved for developers and experienced
34 # professionals having in-depth computer knowledge. Users are therefore
35 # encouraged to load and test the software's suitability as regards their
36 # requirements in conditions enabling the security of their systems and/or
37 # data to be ensured and, more generally, to use and operate it in the
38 # same conditions as regards security.
39 #
40 # The fact that you are presently reading this means that you have had
41 # knowledge of the CeCILL license and that you accept its terms.
42 #
43*/
44
45#include "CImg.h"
46using namespace cimg_library;
47#ifndef cimg_imagepath
48#define cimg_imagepath "img/"
49#endif
50#undef min
51#undef max
52
53// animate_warp() : Create warping animation from two images and a motion field
54//----------------
55void animate_warp(const CImg<unsigned char>& src, const CImg<unsigned char>& dest, const CImg<>& U,
56 const bool morph, const bool imode, const char *filename,int nb, CImgDisplay& disp) {
57 CImg<unsigned char> visu = (src,dest,src)>'x', warp(src);
58 float t = 0;
59 for (unsigned int iteration = 0; !disp || (!disp.is_closed() && !disp.is_keyQ()); ++iteration) {
60 if (morph) cimg_forXYC(warp,x,y,k) {
61 const float dx = U(x,y,0), dy = U(x,y,1),
62 I1 = (float)src.linear_atXY(x - t*dx, y - t*dy, k),
63 I2 = (float)dest.linear_atXY(x + (1 - t)*dx,y + (1 - t)*dy,k);
64 warp(x,y,k) = (unsigned char)((1 - t)*I1 + t*I2);
65 } else cimg_forXYC(warp,x,y,k) {
66 const float dx = U(x,y,0), dy = U(x,y,1), I1 = (float)src.linear_atXY(x - t*dx, y - t*dy, 0,k);
67 warp(x,y,k) = (unsigned char)I1;
68 }
69 if (disp) visu.draw_image(2*src.width(),warp).display(disp.resize().wait(30));
70 if (filename && *filename && (imode || (int)iteration<nb)) {
71 std::fprintf(stderr,"\r > frame %d ",iteration);
72 warp.save(filename,iteration);
73 }
74 t+=1.0f/nb;
75 if (t<0) { t = 0; nb = -nb; }
76 if (t>1) { t = 1; nb = -nb; if (filename && *filename) std::exit(0); }
77 }
78}
79
80// optflow() : multiscale version of the image registration algorithm
81//-----------
82CImg<> optflow(const CImg<>& source, const CImg<>& target,
83 const float smoothness, const float precision, const unsigned int nb_scales, CImgDisplay& disp) {
84 const unsigned int iteration_max = 100000;
85 const float _precision = (float)std::pow(10.0,-(double)precision);
86 const CImg<>
87 src = source.get_resize(target,3).normalize(0,1),
88 dest = target.get_normalize(0,1);
89 CImg<> U;
90
91 const unsigned int _nb_scales = nb_scales>0?nb_scales:
92 (unsigned int)(2*std::log((double)(std::max(src.width(),src.height()))));
93 for (int scale = _nb_scales - 1; scale>=0; --scale) {
94 const float factor = (float)std::pow(1.5,(double)scale);
95 const unsigned int
96 _sw = (unsigned int)(src.width()/factor), sw = _sw?_sw:1,
97 _sh = (unsigned int)(src.height()/factor), sh = _sh?_sh:1;
98 const CImg<>
99 I1 = src.get_resize(sw,sh,1,-100,2),
100 I2 = dest.get_resize(I1,2);
101 std::fprintf(stderr," * Scale %d\n",scale);
102 if (U) (U*=1.5f).resize(I2.width(),I2.height(),1,-100,3);
103 else U.assign(I2.width(),I2.height(),1,2,0);
104
105 float dt = 2, energy = cimg::type<float>::max();
106 const CImgList<> dI = I2.get_gradient();
107
108 for (unsigned int iteration = 0; iteration<iteration_max; ++iteration) {
109 std::fprintf(stderr,"\r- Iteration %d - E = %g",iteration,energy); std::fflush(stderr);
110 float _energy = 0;
111 cimg_for3XY(U,x,y) {
112 const float
113 X = x + U(x,y,0),
114 Y = y + U(x,y,1);
115
116 float deltaI = 0;
117 cimg_forC(I2,c) deltaI+=(float)(I1(x,y,c) - I2.linear_atXY(X,Y,c));
118
119 float _energy_regul = 0;
120 cimg_forC(U,c) {
121 const float
122 Ux = 0.5f*(U(_n1x,y,c) - U(_p1x,y,c)),
123 Uy = 0.5f*(U(x,_n1y,c) - U(x,_p1y,c)),
124 Uxx = U(_n1x,y,c) + U(_p1x,y,c),
125 Uyy = U(x,_n1y,c) + U(x,_p1y,c);
126 U(x,y,c) = (float)( U(x,y,c) + dt*(deltaI*dI[c].linear_atXY(X,Y) +
127 smoothness* ( Uxx + Uyy )))/(1 + 4*smoothness*dt);
128 _energy_regul+=Ux*Ux + Uy*Uy;
129 }
130 _energy+=deltaI*deltaI + smoothness*_energy_regul;
131 }
132 const float d_energy = (_energy - energy)/(sw*sh);
133 if (d_energy<=0 && -d_energy<_precision) break;
134 if (d_energy>0) dt*=0.5f;
135 energy = _energy;
136 if (disp) disp.resize();
137 if (disp && disp.is_closed()) std::exit(0);
138 if (disp && !(iteration%300)) {
139 const unsigned char white[] = { 255,255,255 };
140 CImg<unsigned char> tmp = I1.get_warp(U,true,true,1).normalize(0,200);
141 tmp.resize(disp.width(),disp.height()).draw_quiver(U,white,0.7f,15,-14,true).display(disp);
142 }
143 }
144 std::fprintf(stderr,"\n");
145 }
146 return U;
147}
148
149/*------------------------
150
151 Main function
152
153 ------------------------*/
154
155int main(int argc,char **argv) {
156
157 // Read command line parameters
158 cimg_usage("Compute an optical flow between two 2D images, and create a warped animation");
159 const char
160 *name_i1 = cimg_option("-i",cimg_imagepath "sh0r.pgm","Input Image 1 (Destination)"),
161 *name_i2 = cimg_option("-i2",cimg_imagepath "sh1r.pgm","Input Image 2 (Source)"),
162 *name_o = cimg_option("-o",(const char*)NULL,"Output 2D flow (inrimage)"),
163 *name_seq = cimg_option("-o2",(const char*)NULL,"Output Warping Sequence");
164 const float
165 smoothness = cimg_option("-s",0.1f,"Flow Smoothness"),
166 precision = cimg_option("-p",6.0f,"Convergence precision");
167 const unsigned int
168 nb = cimg_option("-n",40,"Number of warped frames"),
169 nb_scales = cimg_option("-scale",0,"Number of scales (0=auto)");
170 const bool
171 normalize = cimg_option("-equalize",true,"Histogram normalization of the images"),
172 morph = cimg_option("-m",true,"Morphing mode"),
173 imode = cimg_option("-c",true,"Complete interpolation (or last frame is missing)"),
174 dispflag = !cimg_option("-novisu",false,"Visualization");
175
176 // Init images and display
177 std::fprintf(stderr," - Init images.\n");
178 const CImg<>
179 src(name_i1),
180 dest(CImg<>(name_i2).resize(src,3)),
181 src_blur = normalize?src.get_blur(0.5f).equalize(256):src.get_blur(0.5f),
182 dest_blur = normalize?dest.get_blur(0.5f).equalize(256):dest.get_blur(0.5f);
183
184 CImgDisplay disp;
185 if (dispflag) {
186 unsigned int w = src.width(), h = src.height();
187 const unsigned int dmin = std::min(w,h), minsiz = 512;
188 if (dmin<minsiz) { w=w*minsiz/dmin; h=h*minsiz/dmin; }
189 const unsigned int dmax = std::max(w,h), maxsiz = 1024;
190 if (dmax>maxsiz) { w=w*maxsiz/dmax; h=h*maxsiz/dmax; }
191 disp.assign(w,h,"Estimated Motion",0);
192 }
193
194 // Run Motion estimation algorithm
195 std::fprintf(stderr," - Compute optical flow.\n");
196 const CImg<> U = optflow(src_blur,dest_blur,smoothness,precision,nb_scales,disp);
197 if (name_o) U.save(name_o);
198 U.print("Computed flow");
199
200 // Do morphing animation
201 std::fprintf(stderr," - Create warped animation.\n");
202 CImgDisplay disp2;
203 if (dispflag) {
204 unsigned int w = src.width(), h = src.height();
205 const unsigned int dmin = std::min(w,h), minsiz = 100;
206 if (dmin<minsiz) { w = w*minsiz/dmin; h=h*minsiz/dmin; }
207 const unsigned int dmax = std::max(w,h), maxsiz = 1024/3;
208 if (dmax>maxsiz) { w = w*maxsiz/dmax; h=h*maxsiz/dmax; }
209 disp2.assign(3*w,h,"Source/Destination images and Motion animation",0);
210 }
211
212 animate_warp(src.get_normalize(0,255),dest.get_normalize(0,255),U,morph,imode,name_seq,nb,disp2);
213
214 std::exit(0);
215 return 0;
216}