Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | // |
| 15 | // ----------------------------------------------------------------------------- |
| 16 | // File: time.h |
| 17 | // ----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // This header file defines abstractions for computing with absolute points |
| 20 | // in time, durations of time, and formatting and parsing time within a given |
| 21 | // time zone. The following abstractions are defined: |
| 22 | // |
| 23 | // * `absl::Time` defines an absolute, specific instance in time |
| 24 | // * `absl::Duration` defines a signed, fixed-length span of time |
| 25 | // * `absl::TimeZone` defines geopolitical time zone regions (as collected |
| 26 | // within the IANA Time Zone database (https://www.iana.org/time-zones)). |
| 27 | // |
| 28 | // Note: Absolute times are distinct from civil times, which refer to the |
| 29 | // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping |
| 30 | // between absolute and civil times can be specified by use of time zones |
| 31 | // (`absl::TimeZone` within this API). That is: |
| 32 | // |
| 33 | // Civil Time = F(Absolute Time, Time Zone) |
| 34 | // Absolute Time = G(Civil Time, Time Zone) |
| 35 | // |
| 36 | // See civil_time.h for abstractions related to constructing and manipulating |
| 37 | // civil time. |
| 38 | // |
| 39 | // Example: |
| 40 | // |
| 41 | // absl::TimeZone nyc; |
| 42 | // // LoadTimeZone() may fail so it's always better to check for success. |
| 43 | // if (!absl::LoadTimeZone("America/New_York", &nyc)) { |
| 44 | // // handle error case |
| 45 | // } |
| 46 | // |
| 47 | // // My flight leaves NYC on Jan 2, 2017 at 03:04:05 |
| 48 | // absl::CivilSecond cs(2017, 1, 2, 3, 4, 5); |
| 49 | // absl::Time takeoff = absl::FromCivil(cs, nyc); |
| 50 | // |
| 51 | // absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35); |
| 52 | // absl::Time landing = takeoff + flight_duration; |
| 53 | // |
| 54 | // absl::TimeZone syd; |
| 55 | // if (!absl::LoadTimeZone("Australia/Sydney", &syd)) { |
| 56 | // // handle error case |
| 57 | // } |
| 58 | // std::string s = absl::FormatTime( |
| 59 | // "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S", |
| 60 | // landing, syd); |
| 61 | |
| 62 | #ifndef ABSL_TIME_TIME_H_ |
| 63 | #define ABSL_TIME_TIME_H_ |
| 64 | |
| 65 | #if !defined(_MSC_VER) |
| 66 | #include <sys/time.h> |
| 67 | #else |
| 68 | // We don't include `winsock2.h` because it drags in `windows.h` and friends, |
| 69 | // and they define conflicting macros like OPAQUE, ERROR, and more. This has the |
| 70 | // potential to break Abseil users. |
| 71 | // |
| 72 | // Instead we only forward declare `timeval` and require Windows users include |
| 73 | // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is |
| 74 | // including 'windows.h' so we are picking the lesser of two evils here. |
| 75 | struct timeval; |
| 76 | #endif |
| 77 | #include <chrono> // NOLINT(build/c++11) |
| 78 | #include <cmath> |
| 79 | #include <cstdint> |
| 80 | #include <ctime> |
| 81 | #include <ostream> |
| 82 | #include <string> |
| 83 | #include <type_traits> |
| 84 | #include <utility> |
| 85 | |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 86 | #include "absl/base/macros.h" |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 87 | #include "absl/strings/string_view.h" |
| 88 | #include "absl/time/civil_time.h" |
| 89 | #include "absl/time/internal/cctz/include/cctz/time_zone.h" |
| 90 | |
| 91 | namespace absl { |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 92 | ABSL_NAMESPACE_BEGIN |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 93 | |
| 94 | class Duration; // Defined below |
| 95 | class Time; // Defined below |
| 96 | class TimeZone; // Defined below |
| 97 | |
| 98 | namespace time_internal { |
| 99 | int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem); |
| 100 | constexpr Time FromUnixDuration(Duration d); |
| 101 | constexpr Duration ToUnixDuration(Time t); |
| 102 | constexpr int64_t GetRepHi(Duration d); |
| 103 | constexpr uint32_t GetRepLo(Duration d); |
| 104 | constexpr Duration MakeDuration(int64_t hi, uint32_t lo); |
| 105 | constexpr Duration MakeDuration(int64_t hi, int64_t lo); |
| 106 | inline Duration MakePosDoubleDuration(double n); |
| 107 | constexpr int64_t kTicksPerNanosecond = 4; |
| 108 | constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond; |
| 109 | template <std::intmax_t N> |
| 110 | constexpr Duration FromInt64(int64_t v, std::ratio<1, N>); |
| 111 | constexpr Duration FromInt64(int64_t v, std::ratio<60>); |
| 112 | constexpr Duration FromInt64(int64_t v, std::ratio<3600>); |
| 113 | template <typename T> |
| 114 | using EnableIfIntegral = typename std::enable_if< |
| 115 | std::is_integral<T>::value || std::is_enum<T>::value, int>::type; |
| 116 | template <typename T> |
| 117 | using EnableIfFloat = |
| 118 | typename std::enable_if<std::is_floating_point<T>::value, int>::type; |
| 119 | } // namespace time_internal |
| 120 | |
| 121 | // Duration |
| 122 | // |
| 123 | // The `absl::Duration` class represents a signed, fixed-length span of time. |
| 124 | // A `Duration` is generated using a unit-specific factory function, or is |
| 125 | // the result of subtracting one `absl::Time` from another. Durations behave |
| 126 | // like unit-safe integers and they support all the natural integer-like |
| 127 | // arithmetic operations. Arithmetic overflows and saturates at +/- infinity. |
| 128 | // `Duration` should be passed by value rather than const reference. |
| 129 | // |
| 130 | // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`, |
| 131 | // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for |
| 132 | // creation of constexpr `Duration` values |
| 133 | // |
| 134 | // Examples: |
| 135 | // |
| 136 | // constexpr absl::Duration ten_ns = absl::Nanoseconds(10); |
| 137 | // constexpr absl::Duration min = absl::Minutes(1); |
| 138 | // constexpr absl::Duration hour = absl::Hours(1); |
| 139 | // absl::Duration dur = 60 * min; // dur == hour |
| 140 | // absl::Duration half_sec = absl::Milliseconds(500); |
| 141 | // absl::Duration quarter_sec = 0.25 * absl::Seconds(1); |
| 142 | // |
| 143 | // `Duration` values can be easily converted to an integral number of units |
| 144 | // using the division operator. |
| 145 | // |
| 146 | // Example: |
| 147 | // |
| 148 | // constexpr absl::Duration dur = absl::Milliseconds(1500); |
| 149 | // int64_t ns = dur / absl::Nanoseconds(1); // ns == 1500000000 |
| 150 | // int64_t ms = dur / absl::Milliseconds(1); // ms == 1500 |
| 151 | // int64_t sec = dur / absl::Seconds(1); // sec == 1 (subseconds truncated) |
| 152 | // int64_t min = dur / absl::Minutes(1); // min == 0 |
| 153 | // |
| 154 | // See the `IDivDuration()` and `FDivDuration()` functions below for details on |
| 155 | // how to access the fractional parts of the quotient. |
| 156 | // |
| 157 | // Alternatively, conversions can be performed using helpers such as |
| 158 | // `ToInt64Microseconds()` and `ToDoubleSeconds()`. |
| 159 | class Duration { |
| 160 | public: |
| 161 | // Value semantics. |
| 162 | constexpr Duration() : rep_hi_(0), rep_lo_(0) {} // zero-length duration |
| 163 | |
| 164 | // Copyable. |
| 165 | #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1910 |
| 166 | // Explicitly defining the constexpr copy constructor avoids an MSVC bug. |
| 167 | constexpr Duration(const Duration& d) |
| 168 | : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {} |
| 169 | #else |
| 170 | constexpr Duration(const Duration& d) = default; |
| 171 | #endif |
| 172 | Duration& operator=(const Duration& d) = default; |
| 173 | |
| 174 | // Compound assignment operators. |
| 175 | Duration& operator+=(Duration d); |
| 176 | Duration& operator-=(Duration d); |
| 177 | Duration& operator*=(int64_t r); |
| 178 | Duration& operator*=(double r); |
| 179 | Duration& operator/=(int64_t r); |
| 180 | Duration& operator/=(double r); |
| 181 | Duration& operator%=(Duration rhs); |
| 182 | |
| 183 | // Overloads that forward to either the int64_t or double overloads above. |
| 184 | // Integer operands must be representable as int64_t. |
| 185 | template <typename T> |
| 186 | Duration& operator*=(T r) { |
| 187 | int64_t x = r; |
| 188 | return *this *= x; |
| 189 | } |
| 190 | template <typename T> |
| 191 | Duration& operator/=(T r) { |
| 192 | int64_t x = r; |
| 193 | return *this /= x; |
| 194 | } |
| 195 | Duration& operator*=(float r) { return *this *= static_cast<double>(r); } |
| 196 | Duration& operator/=(float r) { return *this /= static_cast<double>(r); } |
| 197 | |
| 198 | template <typename H> |
| 199 | friend H AbslHashValue(H h, Duration d) { |
| 200 | return H::combine(std::move(h), d.rep_hi_, d.rep_lo_); |
| 201 | } |
| 202 | |
| 203 | private: |
| 204 | friend constexpr int64_t time_internal::GetRepHi(Duration d); |
| 205 | friend constexpr uint32_t time_internal::GetRepLo(Duration d); |
| 206 | friend constexpr Duration time_internal::MakeDuration(int64_t hi, |
| 207 | uint32_t lo); |
| 208 | constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {} |
| 209 | int64_t rep_hi_; |
| 210 | uint32_t rep_lo_; |
| 211 | }; |
| 212 | |
| 213 | // Relational Operators |
| 214 | constexpr bool operator<(Duration lhs, Duration rhs); |
| 215 | constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; } |
| 216 | constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); } |
| 217 | constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); } |
| 218 | constexpr bool operator==(Duration lhs, Duration rhs); |
| 219 | constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); } |
| 220 | |
| 221 | // Additive Operators |
| 222 | constexpr Duration operator-(Duration d); |
| 223 | inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; } |
| 224 | inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; } |
| 225 | |
| 226 | // Multiplicative Operators |
| 227 | // Integer operands must be representable as int64_t. |
| 228 | template <typename T> |
| 229 | Duration operator*(Duration lhs, T rhs) { |
| 230 | return lhs *= rhs; |
| 231 | } |
| 232 | template <typename T> |
| 233 | Duration operator*(T lhs, Duration rhs) { |
| 234 | return rhs *= lhs; |
| 235 | } |
| 236 | template <typename T> |
| 237 | Duration operator/(Duration lhs, T rhs) { |
| 238 | return lhs /= rhs; |
| 239 | } |
| 240 | inline int64_t operator/(Duration lhs, Duration rhs) { |
| 241 | return time_internal::IDivDuration(true, lhs, rhs, |
| 242 | &lhs); // trunc towards zero |
| 243 | } |
| 244 | inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; } |
| 245 | |
| 246 | // IDivDuration() |
| 247 | // |
| 248 | // Divides a numerator `Duration` by a denominator `Duration`, returning the |
| 249 | // quotient and remainder. The remainder always has the same sign as the |
| 250 | // numerator. The returned quotient and remainder respect the identity: |
| 251 | // |
| 252 | // numerator = denominator * quotient + remainder |
| 253 | // |
| 254 | // Returned quotients are capped to the range of `int64_t`, with the difference |
| 255 | // spilling into the remainder to uphold the above identity. This means that the |
| 256 | // remainder returned could differ from the remainder returned by |
| 257 | // `Duration::operator%` for huge quotients. |
| 258 | // |
| 259 | // See also the notes on `InfiniteDuration()` below regarding the behavior of |
| 260 | // division involving zero and infinite durations. |
| 261 | // |
| 262 | // Example: |
| 263 | // |
| 264 | // constexpr absl::Duration a = |
| 265 | // absl::Seconds(std::numeric_limits<int64_t>::max()); // big |
| 266 | // constexpr absl::Duration b = absl::Nanoseconds(1); // small |
| 267 | // |
| 268 | // absl::Duration rem = a % b; |
| 269 | // // rem == absl::ZeroDuration() |
| 270 | // |
| 271 | // // Here, q would overflow int64_t, so rem accounts for the difference. |
| 272 | // int64_t q = absl::IDivDuration(a, b, &rem); |
| 273 | // // q == std::numeric_limits<int64_t>::max(), rem == a - b * q |
| 274 | inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) { |
| 275 | return time_internal::IDivDuration(true, num, den, |
| 276 | rem); // trunc towards zero |
| 277 | } |
| 278 | |
| 279 | // FDivDuration() |
| 280 | // |
| 281 | // Divides a `Duration` numerator into a fractional number of units of a |
| 282 | // `Duration` denominator. |
| 283 | // |
| 284 | // See also the notes on `InfiniteDuration()` below regarding the behavior of |
| 285 | // division involving zero and infinite durations. |
| 286 | // |
| 287 | // Example: |
| 288 | // |
| 289 | // double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1)); |
| 290 | // // d == 1.5 |
| 291 | double FDivDuration(Duration num, Duration den); |
| 292 | |
| 293 | // ZeroDuration() |
| 294 | // |
| 295 | // Returns a zero-length duration. This function behaves just like the default |
| 296 | // constructor, but the name helps make the semantics clear at call sites. |
| 297 | constexpr Duration ZeroDuration() { return Duration(); } |
| 298 | |
| 299 | // AbsDuration() |
| 300 | // |
| 301 | // Returns the absolute value of a duration. |
| 302 | inline Duration AbsDuration(Duration d) { |
| 303 | return (d < ZeroDuration()) ? -d : d; |
| 304 | } |
| 305 | |
| 306 | // Trunc() |
| 307 | // |
| 308 | // Truncates a duration (toward zero) to a multiple of a non-zero unit. |
| 309 | // |
| 310 | // Example: |
| 311 | // |
| 312 | // absl::Duration d = absl::Nanoseconds(123456789); |
| 313 | // absl::Duration a = absl::Trunc(d, absl::Microseconds(1)); // 123456us |
| 314 | Duration Trunc(Duration d, Duration unit); |
| 315 | |
| 316 | // Floor() |
| 317 | // |
| 318 | // Floors a duration using the passed duration unit to its largest value not |
| 319 | // greater than the duration. |
| 320 | // |
| 321 | // Example: |
| 322 | // |
| 323 | // absl::Duration d = absl::Nanoseconds(123456789); |
| 324 | // absl::Duration b = absl::Floor(d, absl::Microseconds(1)); // 123456us |
| 325 | Duration Floor(Duration d, Duration unit); |
| 326 | |
| 327 | // Ceil() |
| 328 | // |
| 329 | // Returns the ceiling of a duration using the passed duration unit to its |
| 330 | // smallest value not less than the duration. |
| 331 | // |
| 332 | // Example: |
| 333 | // |
| 334 | // absl::Duration d = absl::Nanoseconds(123456789); |
| 335 | // absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us |
| 336 | Duration Ceil(Duration d, Duration unit); |
| 337 | |
| 338 | // InfiniteDuration() |
| 339 | // |
| 340 | // Returns an infinite `Duration`. To get a `Duration` representing negative |
| 341 | // infinity, use `-InfiniteDuration()`. |
| 342 | // |
| 343 | // Duration arithmetic overflows to +/- infinity and saturates. In general, |
| 344 | // arithmetic with `Duration` infinities is similar to IEEE 754 infinities |
| 345 | // except where IEEE 754 NaN would be involved, in which case +/- |
| 346 | // `InfiniteDuration()` is used in place of a "nan" Duration. |
| 347 | // |
| 348 | // Examples: |
| 349 | // |
| 350 | // constexpr absl::Duration inf = absl::InfiniteDuration(); |
| 351 | // const absl::Duration d = ... any finite duration ... |
| 352 | // |
| 353 | // inf == inf + inf |
| 354 | // inf == inf + d |
| 355 | // inf == inf - inf |
| 356 | // -inf == d - inf |
| 357 | // |
| 358 | // inf == d * 1e100 |
| 359 | // inf == inf / 2 |
| 360 | // 0 == d / inf |
| 361 | // INT64_MAX == inf / d |
| 362 | // |
| 363 | // d < inf |
| 364 | // -inf < d |
| 365 | // |
| 366 | // // Division by zero returns infinity, or INT64_MIN/MAX where appropriate. |
| 367 | // inf == d / 0 |
| 368 | // INT64_MAX == d / absl::ZeroDuration() |
| 369 | // |
| 370 | // The examples involving the `/` operator above also apply to `IDivDuration()` |
| 371 | // and `FDivDuration()`. |
| 372 | constexpr Duration InfiniteDuration(); |
| 373 | |
| 374 | // Nanoseconds() |
| 375 | // Microseconds() |
| 376 | // Milliseconds() |
| 377 | // Seconds() |
| 378 | // Minutes() |
| 379 | // Hours() |
| 380 | // |
| 381 | // Factory functions for constructing `Duration` values from an integral number |
| 382 | // of the unit indicated by the factory function's name. The number must be |
| 383 | // representable as int64_t. |
| 384 | // |
| 385 | // NOTE: no "Days()" factory function exists because "a day" is ambiguous. |
| 386 | // Civil days are not always 24 hours long, and a 24-hour duration often does |
| 387 | // not correspond with a civil day. If a 24-hour duration is needed, use |
| 388 | // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay |
| 389 | // from civil_time.h. |
| 390 | // |
| 391 | // Example: |
| 392 | // |
| 393 | // absl::Duration a = absl::Seconds(60); |
| 394 | // absl::Duration b = absl::Minutes(1); // b == a |
| 395 | constexpr Duration Nanoseconds(int64_t n); |
| 396 | constexpr Duration Microseconds(int64_t n); |
| 397 | constexpr Duration Milliseconds(int64_t n); |
| 398 | constexpr Duration Seconds(int64_t n); |
| 399 | constexpr Duration Minutes(int64_t n); |
| 400 | constexpr Duration Hours(int64_t n); |
| 401 | |
| 402 | // Factory overloads for constructing `Duration` values from a floating-point |
| 403 | // number of the unit indicated by the factory function's name. These functions |
| 404 | // exist for convenience, but they are not as efficient as the integral |
| 405 | // factories, which should be preferred. |
| 406 | // |
| 407 | // Example: |
| 408 | // |
| 409 | // auto a = absl::Seconds(1.5); // OK |
| 410 | // auto b = absl::Milliseconds(1500); // BETTER |
| 411 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
| 412 | Duration Nanoseconds(T n) { |
| 413 | return n * Nanoseconds(1); |
| 414 | } |
| 415 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
| 416 | Duration Microseconds(T n) { |
| 417 | return n * Microseconds(1); |
| 418 | } |
| 419 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
| 420 | Duration Milliseconds(T n) { |
| 421 | return n * Milliseconds(1); |
| 422 | } |
| 423 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
| 424 | Duration Seconds(T n) { |
| 425 | if (n >= 0) { // Note: `NaN >= 0` is false. |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 426 | if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) { |
| 427 | return InfiniteDuration(); |
| 428 | } |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 429 | return time_internal::MakePosDoubleDuration(n); |
| 430 | } else { |
| 431 | if (std::isnan(n)) |
| 432 | return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration(); |
| 433 | if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration(); |
| 434 | return -time_internal::MakePosDoubleDuration(-n); |
| 435 | } |
| 436 | } |
| 437 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
| 438 | Duration Minutes(T n) { |
| 439 | return n * Minutes(1); |
| 440 | } |
| 441 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
| 442 | Duration Hours(T n) { |
| 443 | return n * Hours(1); |
| 444 | } |
| 445 | |
| 446 | // ToInt64Nanoseconds() |
| 447 | // ToInt64Microseconds() |
| 448 | // ToInt64Milliseconds() |
| 449 | // ToInt64Seconds() |
| 450 | // ToInt64Minutes() |
| 451 | // ToInt64Hours() |
| 452 | // |
| 453 | // Helper functions that convert a Duration to an integral count of the |
| 454 | // indicated unit. These functions are shorthand for the `IDivDuration()` |
| 455 | // function above; see its documentation for details about overflow, etc. |
| 456 | // |
| 457 | // Example: |
| 458 | // |
| 459 | // absl::Duration d = absl::Milliseconds(1500); |
| 460 | // int64_t isec = absl::ToInt64Seconds(d); // isec == 1 |
| 461 | int64_t ToInt64Nanoseconds(Duration d); |
| 462 | int64_t ToInt64Microseconds(Duration d); |
| 463 | int64_t ToInt64Milliseconds(Duration d); |
| 464 | int64_t ToInt64Seconds(Duration d); |
| 465 | int64_t ToInt64Minutes(Duration d); |
| 466 | int64_t ToInt64Hours(Duration d); |
| 467 | |
| 468 | // ToDoubleNanoSeconds() |
| 469 | // ToDoubleMicroseconds() |
| 470 | // ToDoubleMilliseconds() |
| 471 | // ToDoubleSeconds() |
| 472 | // ToDoubleMinutes() |
| 473 | // ToDoubleHours() |
| 474 | // |
| 475 | // Helper functions that convert a Duration to a floating point count of the |
| 476 | // indicated unit. These functions are shorthand for the `FDivDuration()` |
| 477 | // function above; see its documentation for details about overflow, etc. |
| 478 | // |
| 479 | // Example: |
| 480 | // |
| 481 | // absl::Duration d = absl::Milliseconds(1500); |
| 482 | // double dsec = absl::ToDoubleSeconds(d); // dsec == 1.5 |
| 483 | double ToDoubleNanoseconds(Duration d); |
| 484 | double ToDoubleMicroseconds(Duration d); |
| 485 | double ToDoubleMilliseconds(Duration d); |
| 486 | double ToDoubleSeconds(Duration d); |
| 487 | double ToDoubleMinutes(Duration d); |
| 488 | double ToDoubleHours(Duration d); |
| 489 | |
| 490 | // FromChrono() |
| 491 | // |
| 492 | // Converts any of the pre-defined std::chrono durations to an absl::Duration. |
| 493 | // |
| 494 | // Example: |
| 495 | // |
| 496 | // std::chrono::milliseconds ms(123); |
| 497 | // absl::Duration d = absl::FromChrono(ms); |
| 498 | constexpr Duration FromChrono(const std::chrono::nanoseconds& d); |
| 499 | constexpr Duration FromChrono(const std::chrono::microseconds& d); |
| 500 | constexpr Duration FromChrono(const std::chrono::milliseconds& d); |
| 501 | constexpr Duration FromChrono(const std::chrono::seconds& d); |
| 502 | constexpr Duration FromChrono(const std::chrono::minutes& d); |
| 503 | constexpr Duration FromChrono(const std::chrono::hours& d); |
| 504 | |
| 505 | // ToChronoNanoseconds() |
| 506 | // ToChronoMicroseconds() |
| 507 | // ToChronoMilliseconds() |
| 508 | // ToChronoSeconds() |
| 509 | // ToChronoMinutes() |
| 510 | // ToChronoHours() |
| 511 | // |
| 512 | // Converts an absl::Duration to any of the pre-defined std::chrono durations. |
| 513 | // If overflow would occur, the returned value will saturate at the min/max |
| 514 | // chrono duration value instead. |
| 515 | // |
| 516 | // Example: |
| 517 | // |
| 518 | // absl::Duration d = absl::Microseconds(123); |
| 519 | // auto x = absl::ToChronoMicroseconds(d); |
| 520 | // auto y = absl::ToChronoNanoseconds(d); // x == y |
| 521 | // auto z = absl::ToChronoSeconds(absl::InfiniteDuration()); |
| 522 | // // z == std::chrono::seconds::max() |
| 523 | std::chrono::nanoseconds ToChronoNanoseconds(Duration d); |
| 524 | std::chrono::microseconds ToChronoMicroseconds(Duration d); |
| 525 | std::chrono::milliseconds ToChronoMilliseconds(Duration d); |
| 526 | std::chrono::seconds ToChronoSeconds(Duration d); |
| 527 | std::chrono::minutes ToChronoMinutes(Duration d); |
| 528 | std::chrono::hours ToChronoHours(Duration d); |
| 529 | |
| 530 | // FormatDuration() |
| 531 | // |
| 532 | // Returns a string representing the duration in the form "72h3m0.5s". |
| 533 | // Returns "inf" or "-inf" for +/- `InfiniteDuration()`. |
| 534 | std::string FormatDuration(Duration d); |
| 535 | |
| 536 | // Output stream operator. |
| 537 | inline std::ostream& operator<<(std::ostream& os, Duration d) { |
| 538 | return os << FormatDuration(d); |
| 539 | } |
| 540 | |
| 541 | // ParseDuration() |
| 542 | // |
| 543 | // Parses a duration string consisting of a possibly signed sequence of |
| 544 | // decimal numbers, each with an optional fractional part and a unit |
| 545 | // suffix. The valid suffixes are "ns", "us" "ms", "s", "m", and "h". |
| 546 | // Simple examples include "300ms", "-1.5h", and "2h45m". Parses "0" as |
| 547 | // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`. |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 548 | bool ParseDuration(absl::string_view dur_string, Duration* d); |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 549 | |
| 550 | // Support for flag values of type Duration. Duration flags must be specified |
| 551 | // in a format that is valid input for absl::ParseDuration(). |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 552 | bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error); |
| 553 | std::string AbslUnparseFlag(Duration d); |
| 554 | ABSL_DEPRECATED("Use AbslParseFlag() instead.") |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 555 | bool ParseFlag(const std::string& text, Duration* dst, std::string* error); |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 556 | ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 557 | std::string UnparseFlag(Duration d); |
| 558 | |
| 559 | // Time |
| 560 | // |
| 561 | // An `absl::Time` represents a specific instant in time. Arithmetic operators |
| 562 | // are provided for naturally expressing time calculations. Instances are |
| 563 | // created using `absl::Now()` and the `absl::From*()` factory functions that |
| 564 | // accept the gamut of other time representations. Formatting and parsing |
| 565 | // functions are provided for conversion to and from strings. `absl::Time` |
| 566 | // should be passed by value rather than const reference. |
| 567 | // |
| 568 | // `absl::Time` assumes there are 60 seconds in a minute, which means the |
| 569 | // underlying time scales must be "smeared" to eliminate leap seconds. |
| 570 | // See https://developers.google.com/time/smear. |
| 571 | // |
| 572 | // Even though `absl::Time` supports a wide range of timestamps, exercise |
| 573 | // caution when using values in the distant past. `absl::Time` uses the |
| 574 | // Proleptic Gregorian calendar, which extends the Gregorian calendar backward |
| 575 | // to dates before its introduction in 1582. |
| 576 | // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar |
| 577 | // for more information. Use the ICU calendar classes to convert a date in |
| 578 | // some other calendar (http://userguide.icu-project.org/datetime/calendar). |
| 579 | // |
| 580 | // Similarly, standardized time zones are a reasonably recent innovation, with |
| 581 | // the Greenwich prime meridian being established in 1884. The TZ database |
| 582 | // itself does not profess accurate offsets for timestamps prior to 1970. The |
| 583 | // breakdown of future timestamps is subject to the whim of regional |
| 584 | // governments. |
| 585 | // |
| 586 | // The `absl::Time` class represents an instant in time as a count of clock |
| 587 | // ticks of some granularity (resolution) from some starting point (epoch). |
| 588 | // |
| 589 | // `absl::Time` uses a resolution that is high enough to avoid loss in |
| 590 | // precision, and a range that is wide enough to avoid overflow, when |
| 591 | // converting between tick counts in most Google time scales (i.e., resolution |
| 592 | // of at least one nanosecond, and range +/-100 billion years). Conversions |
| 593 | // between the time scales are performed by truncating (towards negative |
| 594 | // infinity) to the nearest representable point. |
| 595 | // |
| 596 | // Examples: |
| 597 | // |
| 598 | // absl::Time t1 = ...; |
| 599 | // absl::Time t2 = t1 + absl::Minutes(2); |
| 600 | // absl::Duration d = t2 - t1; // == absl::Minutes(2) |
| 601 | // |
| 602 | class Time { |
| 603 | public: |
| 604 | // Value semantics. |
| 605 | |
| 606 | // Returns the Unix epoch. However, those reading your code may not know |
| 607 | // or expect the Unix epoch as the default value, so make your code more |
| 608 | // readable by explicitly initializing all instances before use. |
| 609 | // |
| 610 | // Example: |
| 611 | // absl::Time t = absl::UnixEpoch(); |
| 612 | // absl::Time t = absl::Now(); |
| 613 | // absl::Time t = absl::TimeFromTimeval(tv); |
| 614 | // absl::Time t = absl::InfinitePast(); |
| 615 | constexpr Time() = default; |
| 616 | |
| 617 | // Copyable. |
| 618 | constexpr Time(const Time& t) = default; |
| 619 | Time& operator=(const Time& t) = default; |
| 620 | |
| 621 | // Assignment operators. |
| 622 | Time& operator+=(Duration d) { |
| 623 | rep_ += d; |
| 624 | return *this; |
| 625 | } |
| 626 | Time& operator-=(Duration d) { |
| 627 | rep_ -= d; |
| 628 | return *this; |
| 629 | } |
| 630 | |
| 631 | // Time::Breakdown |
| 632 | // |
| 633 | // The calendar and wall-clock (aka "civil time") components of an |
| 634 | // `absl::Time` in a certain `absl::TimeZone`. This struct is not |
| 635 | // intended to represent an instant in time. So, rather than passing |
| 636 | // a `Time::Breakdown` to a function, pass an `absl::Time` and an |
| 637 | // `absl::TimeZone`. |
| 638 | // |
| 639 | // Deprecated. Use `absl::TimeZone::CivilInfo`. |
| 640 | struct |
| 641 | Breakdown { |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 642 | int64_t year; // year (e.g., 2013) |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 643 | int month; // month of year [1:12] |
| 644 | int day; // day of month [1:31] |
| 645 | int hour; // hour of day [0:23] |
| 646 | int minute; // minute of hour [0:59] |
| 647 | int second; // second of minute [0:59] |
| 648 | Duration subsecond; // [Seconds(0):Seconds(1)) if finite |
| 649 | int weekday; // 1==Mon, ..., 7=Sun |
| 650 | int yearday; // day of year [1:366] |
| 651 | |
| 652 | // Note: The following fields exist for backward compatibility |
| 653 | // with older APIs. Accessing these fields directly is a sign of |
| 654 | // imprudent logic in the calling code. Modern time-related code |
| 655 | // should only access this data indirectly by way of FormatTime(). |
| 656 | // These fields are undefined for InfiniteFuture() and InfinitePast(). |
| 657 | int offset; // seconds east of UTC |
| 658 | bool is_dst; // is offset non-standard? |
| 659 | const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
| 660 | }; |
| 661 | |
| 662 | // Time::In() |
| 663 | // |
| 664 | // Returns the breakdown of this instant in the given TimeZone. |
| 665 | // |
| 666 | // Deprecated. Use `absl::TimeZone::At(Time)`. |
| 667 | Breakdown In(TimeZone tz) const; |
| 668 | |
| 669 | template <typename H> |
| 670 | friend H AbslHashValue(H h, Time t) { |
| 671 | return H::combine(std::move(h), t.rep_); |
| 672 | } |
| 673 | |
| 674 | private: |
| 675 | friend constexpr Time time_internal::FromUnixDuration(Duration d); |
| 676 | friend constexpr Duration time_internal::ToUnixDuration(Time t); |
| 677 | friend constexpr bool operator<(Time lhs, Time rhs); |
| 678 | friend constexpr bool operator==(Time lhs, Time rhs); |
| 679 | friend Duration operator-(Time lhs, Time rhs); |
| 680 | friend constexpr Time UniversalEpoch(); |
| 681 | friend constexpr Time InfiniteFuture(); |
| 682 | friend constexpr Time InfinitePast(); |
| 683 | constexpr explicit Time(Duration rep) : rep_(rep) {} |
| 684 | Duration rep_; |
| 685 | }; |
| 686 | |
| 687 | // Relational Operators |
| 688 | constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; } |
| 689 | constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; } |
| 690 | constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); } |
| 691 | constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); } |
| 692 | constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; } |
| 693 | constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); } |
| 694 | |
| 695 | // Additive Operators |
| 696 | inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; } |
| 697 | inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; } |
| 698 | inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; } |
| 699 | inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; } |
| 700 | |
| 701 | // UnixEpoch() |
| 702 | // |
| 703 | // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000". |
| 704 | constexpr Time UnixEpoch() { return Time(); } |
| 705 | |
| 706 | // UniversalEpoch() |
| 707 | // |
| 708 | // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the |
| 709 | // epoch of the ICU Universal Time Scale. |
| 710 | constexpr Time UniversalEpoch() { |
| 711 | // 719162 is the number of days from 0001-01-01 to 1970-01-01, |
| 712 | // assuming the Gregorian calendar. |
| 713 | return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U)); |
| 714 | } |
| 715 | |
| 716 | // InfiniteFuture() |
| 717 | // |
| 718 | // Returns an `absl::Time` that is infinitely far in the future. |
| 719 | constexpr Time InfiniteFuture() { |
| 720 | return Time( |
| 721 | time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)); |
| 722 | } |
| 723 | |
| 724 | // InfinitePast() |
| 725 | // |
| 726 | // Returns an `absl::Time` that is infinitely far in the past. |
| 727 | constexpr Time InfinitePast() { |
| 728 | return Time( |
| 729 | time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U)); |
| 730 | } |
| 731 | |
| 732 | // FromUnixNanos() |
| 733 | // FromUnixMicros() |
| 734 | // FromUnixMillis() |
| 735 | // FromUnixSeconds() |
| 736 | // FromTimeT() |
| 737 | // FromUDate() |
| 738 | // FromUniversal() |
| 739 | // |
| 740 | // Creates an `absl::Time` from a variety of other representations. |
| 741 | constexpr Time FromUnixNanos(int64_t ns); |
| 742 | constexpr Time FromUnixMicros(int64_t us); |
| 743 | constexpr Time FromUnixMillis(int64_t ms); |
| 744 | constexpr Time FromUnixSeconds(int64_t s); |
| 745 | constexpr Time FromTimeT(time_t t); |
| 746 | Time FromUDate(double udate); |
| 747 | Time FromUniversal(int64_t universal); |
| 748 | |
| 749 | // ToUnixNanos() |
| 750 | // ToUnixMicros() |
| 751 | // ToUnixMillis() |
| 752 | // ToUnixSeconds() |
| 753 | // ToTimeT() |
| 754 | // ToUDate() |
| 755 | // ToUniversal() |
| 756 | // |
| 757 | // Converts an `absl::Time` to a variety of other representations. Note that |
| 758 | // these operations round down toward negative infinity where necessary to |
| 759 | // adjust to the resolution of the result type. Beware of possible time_t |
| 760 | // over/underflow in ToTime{T,val,spec}() on 32-bit platforms. |
| 761 | int64_t ToUnixNanos(Time t); |
| 762 | int64_t ToUnixMicros(Time t); |
| 763 | int64_t ToUnixMillis(Time t); |
| 764 | int64_t ToUnixSeconds(Time t); |
| 765 | time_t ToTimeT(Time t); |
| 766 | double ToUDate(Time t); |
| 767 | int64_t ToUniversal(Time t); |
| 768 | |
| 769 | // DurationFromTimespec() |
| 770 | // DurationFromTimeval() |
| 771 | // ToTimespec() |
| 772 | // ToTimeval() |
| 773 | // TimeFromTimespec() |
| 774 | // TimeFromTimeval() |
| 775 | // ToTimespec() |
| 776 | // ToTimeval() |
| 777 | // |
| 778 | // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2) |
| 779 | // and select(2)), while others use them as a Time (e.g. clock_gettime(2) |
| 780 | // and gettimeofday(2)), so conversion functions are provided for both cases. |
| 781 | // The "to timespec/val" direction is easily handled via overloading, but |
| 782 | // for "from timespec/val" the desired type is part of the function name. |
| 783 | Duration DurationFromTimespec(timespec ts); |
| 784 | Duration DurationFromTimeval(timeval tv); |
| 785 | timespec ToTimespec(Duration d); |
| 786 | timeval ToTimeval(Duration d); |
| 787 | Time TimeFromTimespec(timespec ts); |
| 788 | Time TimeFromTimeval(timeval tv); |
| 789 | timespec ToTimespec(Time t); |
| 790 | timeval ToTimeval(Time t); |
| 791 | |
| 792 | // FromChrono() |
| 793 | // |
| 794 | // Converts a std::chrono::system_clock::time_point to an absl::Time. |
| 795 | // |
| 796 | // Example: |
| 797 | // |
| 798 | // auto tp = std::chrono::system_clock::from_time_t(123); |
| 799 | // absl::Time t = absl::FromChrono(tp); |
| 800 | // // t == absl::FromTimeT(123) |
| 801 | Time FromChrono(const std::chrono::system_clock::time_point& tp); |
| 802 | |
| 803 | // ToChronoTime() |
| 804 | // |
| 805 | // Converts an absl::Time to a std::chrono::system_clock::time_point. If |
| 806 | // overflow would occur, the returned value will saturate at the min/max time |
| 807 | // point value instead. |
| 808 | // |
| 809 | // Example: |
| 810 | // |
| 811 | // absl::Time t = absl::FromTimeT(123); |
| 812 | // auto tp = absl::ToChronoTime(t); |
| 813 | // // tp == std::chrono::system_clock::from_time_t(123); |
| 814 | std::chrono::system_clock::time_point ToChronoTime(Time); |
| 815 | |
| 816 | // Support for flag values of type Time. Time flags must be specified in a |
| 817 | // format that matches absl::RFC3339_full. For example: |
| 818 | // |
| 819 | // --start_time=2016-01-02T03:04:05.678+08:00 |
| 820 | // |
| 821 | // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required. |
| 822 | // |
| 823 | // Additionally, if you'd like to specify a time as a count of |
| 824 | // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag |
| 825 | // and add that duration to absl::UnixEpoch() to get an absl::Time. |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 826 | bool AbslParseFlag(absl::string_view text, Time* t, std::string* error); |
| 827 | std::string AbslUnparseFlag(Time t); |
| 828 | ABSL_DEPRECATED("Use AbslParseFlag() instead.") |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 829 | bool ParseFlag(const std::string& text, Time* t, std::string* error); |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 830 | ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 831 | std::string UnparseFlag(Time t); |
| 832 | |
| 833 | // TimeZone |
| 834 | // |
| 835 | // The `absl::TimeZone` is an opaque, small, value-type class representing a |
| 836 | // geo-political region within which particular rules are used for converting |
| 837 | // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone` |
| 838 | // values are named using the TZ identifiers from the IANA Time Zone Database, |
| 839 | // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values |
| 840 | // are created from factory functions such as `absl::LoadTimeZone()`. Note: |
| 841 | // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by |
| 842 | // value rather than const reference. |
| 843 | // |
| 844 | // For more on the fundamental concepts of time zones, absolute times, and civil |
| 845 | // times, see https://github.com/google/cctz#fundamental-concepts |
| 846 | // |
| 847 | // Examples: |
| 848 | // |
| 849 | // absl::TimeZone utc = absl::UTCTimeZone(); |
| 850 | // absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60); |
| 851 | // absl::TimeZone loc = absl::LocalTimeZone(); |
| 852 | // absl::TimeZone lax; |
| 853 | // if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { |
| 854 | // // handle error case |
| 855 | // } |
| 856 | // |
| 857 | // See also: |
| 858 | // - https://github.com/google/cctz |
| 859 | // - https://www.iana.org/time-zones |
| 860 | // - https://en.wikipedia.org/wiki/Zoneinfo |
| 861 | class TimeZone { |
| 862 | public: |
| 863 | explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {} |
| 864 | TimeZone() = default; // UTC, but prefer UTCTimeZone() to be explicit. |
| 865 | |
| 866 | // Copyable. |
| 867 | TimeZone(const TimeZone&) = default; |
| 868 | TimeZone& operator=(const TimeZone&) = default; |
| 869 | |
| 870 | explicit operator time_internal::cctz::time_zone() const { return cz_; } |
| 871 | |
| 872 | std::string name() const { return cz_.name(); } |
| 873 | |
| 874 | // TimeZone::CivilInfo |
| 875 | // |
| 876 | // Information about the civil time corresponding to an absolute time. |
| 877 | // This struct is not intended to represent an instant in time. So, rather |
| 878 | // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time` |
| 879 | // and an `absl::TimeZone`. |
| 880 | struct CivilInfo { |
| 881 | CivilSecond cs; |
| 882 | Duration subsecond; |
| 883 | |
| 884 | // Note: The following fields exist for backward compatibility |
| 885 | // with older APIs. Accessing these fields directly is a sign of |
| 886 | // imprudent logic in the calling code. Modern time-related code |
| 887 | // should only access this data indirectly by way of FormatTime(). |
| 888 | // These fields are undefined for InfiniteFuture() and InfinitePast(). |
| 889 | int offset; // seconds east of UTC |
| 890 | bool is_dst; // is offset non-standard? |
| 891 | const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
| 892 | }; |
| 893 | |
| 894 | // TimeZone::At(Time) |
| 895 | // |
| 896 | // Returns the civil time for this TimeZone at a certain `absl::Time`. |
| 897 | // If the input time is infinite, the output civil second will be set to |
| 898 | // CivilSecond::max() or min(), and the subsecond will be infinite. |
| 899 | // |
| 900 | // Example: |
| 901 | // |
| 902 | // const auto epoch = lax.At(absl::UnixEpoch()); |
| 903 | // // epoch.cs == 1969-12-31 16:00:00 |
| 904 | // // epoch.subsecond == absl::ZeroDuration() |
| 905 | // // epoch.offset == -28800 |
| 906 | // // epoch.is_dst == false |
| 907 | // // epoch.abbr == "PST" |
| 908 | CivilInfo At(Time t) const; |
| 909 | |
| 910 | // TimeZone::TimeInfo |
| 911 | // |
| 912 | // Information about the absolute times corresponding to a civil time. |
| 913 | // (Subseconds must be handled separately.) |
| 914 | // |
| 915 | // It is possible for a caller to pass a civil-time value that does |
| 916 | // not represent an actual or unique instant in time (due to a shift |
| 917 | // in UTC offset in the TimeZone, which results in a discontinuity in |
| 918 | // the civil-time components). For example, a daylight-saving-time |
| 919 | // transition skips or repeats civil times---in the United States, |
| 920 | // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15 |
| 921 | // occurred twice---so requests for such times are not well-defined. |
| 922 | // To account for these possibilities, `absl::TimeZone::TimeInfo` is |
| 923 | // richer than just a single `absl::Time`. |
| 924 | struct TimeInfo { |
| 925 | enum CivilKind { |
| 926 | UNIQUE, // the civil time was singular (pre == trans == post) |
| 927 | SKIPPED, // the civil time did not exist (pre >= trans > post) |
| 928 | REPEATED, // the civil time was ambiguous (pre < trans <= post) |
| 929 | } kind; |
| 930 | Time pre; // time calculated using the pre-transition offset |
| 931 | Time trans; // when the civil-time discontinuity occurred |
| 932 | Time post; // time calculated using the post-transition offset |
| 933 | }; |
| 934 | |
| 935 | // TimeZone::At(CivilSecond) |
| 936 | // |
| 937 | // Returns an `absl::TimeInfo` containing the absolute time(s) for this |
| 938 | // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or |
| 939 | // repeated, returns times calculated using the pre-transition and post- |
| 940 | // transition UTC offsets, plus the transition time itself. |
| 941 | // |
| 942 | // Examples: |
| 943 | // |
| 944 | // // A unique civil time |
| 945 | // const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0)); |
| 946 | // // jan01.kind == TimeZone::TimeInfo::UNIQUE |
| 947 | // // jan01.pre is 2011-01-01 00:00:00 -0800 |
| 948 | // // jan01.trans is 2011-01-01 00:00:00 -0800 |
| 949 | // // jan01.post is 2011-01-01 00:00:00 -0800 |
| 950 | // |
| 951 | // // A Spring DST transition, when there is a gap in civil time |
| 952 | // const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0)); |
| 953 | // // mar13.kind == TimeZone::TimeInfo::SKIPPED |
| 954 | // // mar13.pre is 2011-03-13 03:15:00 -0700 |
| 955 | // // mar13.trans is 2011-03-13 03:00:00 -0700 |
| 956 | // // mar13.post is 2011-03-13 01:15:00 -0800 |
| 957 | // |
| 958 | // // A Fall DST transition, when civil times are repeated |
| 959 | // const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0)); |
| 960 | // // nov06.kind == TimeZone::TimeInfo::REPEATED |
| 961 | // // nov06.pre is 2011-11-06 01:15:00 -0700 |
| 962 | // // nov06.trans is 2011-11-06 01:00:00 -0800 |
| 963 | // // nov06.post is 2011-11-06 01:15:00 -0800 |
| 964 | TimeInfo At(CivilSecond ct) const; |
| 965 | |
| 966 | // TimeZone::NextTransition() |
| 967 | // TimeZone::PrevTransition() |
| 968 | // |
| 969 | // Finds the time of the next/previous offset change in this time zone. |
| 970 | // |
| 971 | // By definition, `NextTransition(t, &trans)` returns false when `t` is |
| 972 | // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false |
| 973 | // when `t` is `InfinitePast()`. If the zone has no transitions, the |
| 974 | // result will also be false no matter what the argument. |
| 975 | // |
| 976 | // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)` |
| 977 | // returns true and sets `trans` to the first recorded transition. Chains |
| 978 | // of calls to `NextTransition()/PrevTransition()` will eventually return |
| 979 | // false, but it is unspecified exactly when `NextTransition(t, &trans)` |
| 980 | // jumps to false, or what time is set by `PrevTransition(t, &trans)` for |
| 981 | // a very distant `t`. |
| 982 | // |
| 983 | // Note: Enumeration of time-zone transitions is for informational purposes |
| 984 | // only. Modern time-related code should not care about when offset changes |
| 985 | // occur. |
| 986 | // |
| 987 | // Example: |
| 988 | // absl::TimeZone nyc; |
| 989 | // if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... } |
| 990 | // const auto now = absl::Now(); |
| 991 | // auto t = absl::InfinitePast(); |
| 992 | // absl::TimeZone::CivilTransition trans; |
| 993 | // while (t <= now && nyc.NextTransition(t, &trans)) { |
| 994 | // // transition: trans.from -> trans.to |
| 995 | // t = nyc.At(trans.to).trans; |
| 996 | // } |
| 997 | struct CivilTransition { |
| 998 | CivilSecond from; // the civil time we jump from |
| 999 | CivilSecond to; // the civil time we jump to |
| 1000 | }; |
| 1001 | bool NextTransition(Time t, CivilTransition* trans) const; |
| 1002 | bool PrevTransition(Time t, CivilTransition* trans) const; |
| 1003 | |
| 1004 | template <typename H> |
| 1005 | friend H AbslHashValue(H h, TimeZone tz) { |
| 1006 | return H::combine(std::move(h), tz.cz_); |
| 1007 | } |
| 1008 | |
| 1009 | private: |
| 1010 | friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; } |
| 1011 | friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; } |
| 1012 | friend std::ostream& operator<<(std::ostream& os, TimeZone tz) { |
| 1013 | return os << tz.name(); |
| 1014 | } |
| 1015 | |
| 1016 | time_internal::cctz::time_zone cz_; |
| 1017 | }; |
| 1018 | |
| 1019 | // LoadTimeZone() |
| 1020 | // |
| 1021 | // Loads the named zone. May perform I/O on the initial load of the named |
| 1022 | // zone. If the name is invalid, or some other kind of error occurs, returns |
| 1023 | // `false` and `*tz` is set to the UTC time zone. |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1024 | inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) { |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1025 | if (name == "localtime") { |
| 1026 | *tz = TimeZone(time_internal::cctz::local_time_zone()); |
| 1027 | return true; |
| 1028 | } |
| 1029 | time_internal::cctz::time_zone cz; |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1030 | const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz); |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1031 | *tz = TimeZone(cz); |
| 1032 | return b; |
| 1033 | } |
| 1034 | |
| 1035 | // FixedTimeZone() |
| 1036 | // |
| 1037 | // Returns a TimeZone that is a fixed offset (seconds east) from UTC. |
| 1038 | // Note: If the absolute value of the offset is greater than 24 hours |
| 1039 | // you'll get UTC (i.e., no offset) instead. |
| 1040 | inline TimeZone FixedTimeZone(int seconds) { |
| 1041 | return TimeZone( |
| 1042 | time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds))); |
| 1043 | } |
| 1044 | |
| 1045 | // UTCTimeZone() |
| 1046 | // |
| 1047 | // Convenience method returning the UTC time zone. |
| 1048 | inline TimeZone UTCTimeZone() { |
| 1049 | return TimeZone(time_internal::cctz::utc_time_zone()); |
| 1050 | } |
| 1051 | |
| 1052 | // LocalTimeZone() |
| 1053 | // |
| 1054 | // Convenience method returning the local time zone, or UTC if there is |
| 1055 | // no configured local zone. Warning: Be wary of using LocalTimeZone(), |
| 1056 | // and particularly so in a server process, as the zone configured for the |
| 1057 | // local machine should be irrelevant. Prefer an explicit zone name. |
| 1058 | inline TimeZone LocalTimeZone() { |
| 1059 | return TimeZone(time_internal::cctz::local_time_zone()); |
| 1060 | } |
| 1061 | |
| 1062 | // ToCivilSecond() |
| 1063 | // ToCivilMinute() |
| 1064 | // ToCivilHour() |
| 1065 | // ToCivilDay() |
| 1066 | // ToCivilMonth() |
| 1067 | // ToCivilYear() |
| 1068 | // |
| 1069 | // Helpers for TimeZone::At(Time) to return particularly aligned civil times. |
| 1070 | // |
| 1071 | // Example: |
| 1072 | // |
| 1073 | // absl::Time t = ...; |
| 1074 | // absl::TimeZone tz = ...; |
| 1075 | // const auto cd = absl::ToCivilDay(t, tz); |
| 1076 | inline CivilSecond ToCivilSecond(Time t, TimeZone tz) { |
| 1077 | return tz.At(t).cs; // already a CivilSecond |
| 1078 | } |
| 1079 | inline CivilMinute ToCivilMinute(Time t, TimeZone tz) { |
| 1080 | return CivilMinute(tz.At(t).cs); |
| 1081 | } |
| 1082 | inline CivilHour ToCivilHour(Time t, TimeZone tz) { |
| 1083 | return CivilHour(tz.At(t).cs); |
| 1084 | } |
| 1085 | inline CivilDay ToCivilDay(Time t, TimeZone tz) { |
| 1086 | return CivilDay(tz.At(t).cs); |
| 1087 | } |
| 1088 | inline CivilMonth ToCivilMonth(Time t, TimeZone tz) { |
| 1089 | return CivilMonth(tz.At(t).cs); |
| 1090 | } |
| 1091 | inline CivilYear ToCivilYear(Time t, TimeZone tz) { |
| 1092 | return CivilYear(tz.At(t).cs); |
| 1093 | } |
| 1094 | |
| 1095 | // FromCivil() |
| 1096 | // |
| 1097 | // Helper for TimeZone::At(CivilSecond) that provides "order-preserving |
| 1098 | // semantics." If the civil time maps to a unique time, that time is |
| 1099 | // returned. If the civil time is repeated in the given time zone, the |
| 1100 | // time using the pre-transition offset is returned. Otherwise, the |
| 1101 | // civil time is skipped in the given time zone, and the transition time |
| 1102 | // is returned. This means that for any two civil times, ct1 and ct2, |
| 1103 | // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case |
| 1104 | // being when two non-existent civil times map to the same transition time. |
| 1105 | // |
| 1106 | // Note: Accepts civil times of any alignment. |
| 1107 | inline Time FromCivil(CivilSecond ct, TimeZone tz) { |
| 1108 | const auto ti = tz.At(ct); |
| 1109 | if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans; |
| 1110 | return ti.pre; |
| 1111 | } |
| 1112 | |
| 1113 | // TimeConversion |
| 1114 | // |
| 1115 | // An `absl::TimeConversion` represents the conversion of year, month, day, |
| 1116 | // hour, minute, and second values (i.e., a civil time), in a particular |
| 1117 | // `absl::TimeZone`, to a time instant (an absolute time), as returned by |
| 1118 | // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`. |
| 1119 | // |
| 1120 | // Deprecated. Use `absl::TimeZone::TimeInfo`. |
| 1121 | struct |
| 1122 | TimeConversion { |
| 1123 | Time pre; // time calculated using the pre-transition offset |
| 1124 | Time trans; // when the civil-time discontinuity occurred |
| 1125 | Time post; // time calculated using the post-transition offset |
| 1126 | |
| 1127 | enum Kind { |
| 1128 | UNIQUE, // the civil time was singular (pre == trans == post) |
| 1129 | SKIPPED, // the civil time did not exist |
| 1130 | REPEATED, // the civil time was ambiguous |
| 1131 | }; |
| 1132 | Kind kind; |
| 1133 | |
| 1134 | bool normalized; // input values were outside their valid ranges |
| 1135 | }; |
| 1136 | |
| 1137 | // ConvertDateTime() |
| 1138 | // |
| 1139 | // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes |
| 1140 | // the civil time as six, separate values (YMDHMS). |
| 1141 | // |
| 1142 | // The input month, day, hour, minute, and second values can be outside |
| 1143 | // of their valid ranges, in which case they will be "normalized" during |
| 1144 | // the conversion. |
| 1145 | // |
| 1146 | // Example: |
| 1147 | // |
| 1148 | // // "October 32" normalizes to "November 1". |
| 1149 | // absl::TimeConversion tc = |
| 1150 | // absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax); |
| 1151 | // // tc.kind == TimeConversion::UNIQUE && tc.normalized == true |
| 1152 | // // absl::ToCivilDay(tc.pre, tz).month() == 11 |
| 1153 | // // absl::ToCivilDay(tc.pre, tz).day() == 1 |
| 1154 | // |
| 1155 | // Deprecated. Use `absl::TimeZone::At(CivilSecond)`. |
| 1156 | TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, |
| 1157 | int min, int sec, TimeZone tz); |
| 1158 | |
| 1159 | // FromDateTime() |
| 1160 | // |
| 1161 | // A convenience wrapper for `absl::ConvertDateTime()` that simply returns |
| 1162 | // the "pre" `absl::Time`. That is, the unique result, or the instant that |
| 1163 | // is correct using the pre-transition offset (as if the transition never |
| 1164 | // happened). |
| 1165 | // |
| 1166 | // Example: |
| 1167 | // |
| 1168 | // absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax); |
| 1169 | // // t = 2017-09-26 09:30:00 -0700 |
| 1170 | // |
| 1171 | // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the |
| 1172 | // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil |
| 1173 | // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`. |
| 1174 | inline Time FromDateTime(int64_t year, int mon, int day, int hour, |
| 1175 | int min, int sec, TimeZone tz) { |
| 1176 | return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre; |
| 1177 | } |
| 1178 | |
| 1179 | // FromTM() |
| 1180 | // |
| 1181 | // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and |
| 1182 | // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3) |
| 1183 | // for a description of the expected values of the tm fields. If the indicated |
| 1184 | // time instant is not unique (see `absl::TimeZone::At(absl::CivilSecond)` |
| 1185 | // above), the `tm_isdst` field is consulted to select the desired instant |
| 1186 | // (`tm_isdst` > 0 means DST, `tm_isdst` == 0 means no DST, `tm_isdst` < 0 |
| 1187 | // means use the post-transition offset). |
| 1188 | Time FromTM(const struct tm& tm, TimeZone tz); |
| 1189 | |
| 1190 | // ToTM() |
| 1191 | // |
| 1192 | // Converts the given `absl::Time` to a struct tm using the given time zone. |
| 1193 | // See ctime(3) for a description of the values of the tm fields. |
| 1194 | struct tm ToTM(Time t, TimeZone tz); |
| 1195 | |
| 1196 | // RFC3339_full |
| 1197 | // RFC3339_sec |
| 1198 | // |
| 1199 | // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings, |
| 1200 | // with trailing zeros trimmed or with fractional seconds omitted altogether. |
| 1201 | // |
| 1202 | // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and |
| 1203 | // time with UTC offset. Also note the use of "%Y": RFC3339 mandates that |
| 1204 | // years have exactly four digits, but we allow them to take their natural |
| 1205 | // width. |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1206 | ABSL_DLL extern const char RFC3339_full[]; // %Y-%m-%d%ET%H:%M:%E*S%Ez |
| 1207 | ABSL_DLL extern const char RFC3339_sec[]; // %Y-%m-%d%ET%H:%M:%S%Ez |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1208 | |
| 1209 | // RFC1123_full |
| 1210 | // RFC1123_no_wday |
| 1211 | // |
| 1212 | // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings. |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1213 | ABSL_DLL extern const char RFC1123_full[]; // %a, %d %b %E4Y %H:%M:%S %z |
| 1214 | ABSL_DLL extern const char RFC1123_no_wday[]; // %d %b %E4Y %H:%M:%S %z |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1215 | |
| 1216 | // FormatTime() |
| 1217 | // |
| 1218 | // Formats the given `absl::Time` in the `absl::TimeZone` according to the |
| 1219 | // provided format string. Uses strftime()-like formatting options, with |
| 1220 | // the following extensions: |
| 1221 | // |
| 1222 | // - %Ez - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm) |
| 1223 | // - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss) |
| 1224 | // - %E#S - Seconds with # digits of fractional precision |
| 1225 | // - %E*S - Seconds with full fractional precision (a literal '*') |
| 1226 | // - %E#f - Fractional seconds with # digits of precision |
| 1227 | // - %E*f - Fractional seconds with full precision (a literal '*') |
| 1228 | // - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999) |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1229 | // - %ET - The RFC3339 "date-time" separator "T" |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1230 | // |
| 1231 | // Note that %E0S behaves like %S, and %E0f produces no characters. In |
| 1232 | // contrast %E*f always produces at least one digit, which may be '0'. |
| 1233 | // |
| 1234 | // Note that %Y produces as many characters as it takes to fully render the |
| 1235 | // year. A year outside of [-999:9999] when formatted with %E4Y will produce |
| 1236 | // more than four characters, just like %Y. |
| 1237 | // |
| 1238 | // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z) |
| 1239 | // so that the result uniquely identifies a time instant. |
| 1240 | // |
| 1241 | // Example: |
| 1242 | // |
| 1243 | // absl::CivilSecond cs(2013, 1, 2, 3, 4, 5); |
| 1244 | // absl::Time t = absl::FromCivil(cs, lax); |
| 1245 | // std::string f = absl::FormatTime("%H:%M:%S", t, lax); // "03:04:05" |
| 1246 | // f = absl::FormatTime("%H:%M:%E3S", t, lax); // "03:04:05.000" |
| 1247 | // |
| 1248 | // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned |
| 1249 | // string will be exactly "infinite-future". If the given `absl::Time` is |
| 1250 | // `absl::InfinitePast()`, the returned string will be exactly "infinite-past". |
| 1251 | // In both cases the given format string and `absl::TimeZone` are ignored. |
| 1252 | // |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1253 | std::string FormatTime(absl::string_view format, Time t, TimeZone tz); |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1254 | |
| 1255 | // Convenience functions that format the given time using the RFC3339_full |
| 1256 | // format. The first overload uses the provided TimeZone, while the second |
| 1257 | // uses LocalTimeZone(). |
| 1258 | std::string FormatTime(Time t, TimeZone tz); |
| 1259 | std::string FormatTime(Time t); |
| 1260 | |
| 1261 | // Output stream operator. |
| 1262 | inline std::ostream& operator<<(std::ostream& os, Time t) { |
| 1263 | return os << FormatTime(t); |
| 1264 | } |
| 1265 | |
| 1266 | // ParseTime() |
| 1267 | // |
| 1268 | // Parses an input string according to the provided format string and |
| 1269 | // returns the corresponding `absl::Time`. Uses strftime()-like formatting |
| 1270 | // options, with the same extensions as FormatTime(), but with the |
| 1271 | // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f. %Ez |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1272 | // and %E*z also accept the same inputs, which (along with %z) includes |
| 1273 | // 'z' and 'Z' as synonyms for +00:00. %ET accepts either 'T' or 't'. |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1274 | // |
| 1275 | // %Y consumes as many numeric characters as it can, so the matching data |
| 1276 | // should always be terminated with a non-numeric. %E4Y always consumes |
| 1277 | // exactly four characters, including any sign. |
| 1278 | // |
| 1279 | // Unspecified fields are taken from the default date and time of ... |
| 1280 | // |
| 1281 | // "1970-01-01 00:00:00.0 +0000" |
| 1282 | // |
| 1283 | // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time |
| 1284 | // that represents "1970-01-01 15:45:00.0 +0000". |
| 1285 | // |
| 1286 | // Note that since ParseTime() returns time instants, it makes the most sense |
| 1287 | // to parse fully-specified date/time strings that include a UTC offset (%z, |
| 1288 | // %Ez, or %E*z). |
| 1289 | // |
| 1290 | // Note also that `absl::ParseTime()` only heeds the fields year, month, day, |
| 1291 | // hour, minute, (fractional) second, and UTC offset. Other fields, like |
| 1292 | // weekday (%a or %A), while parsed for syntactic validity, are ignored |
| 1293 | // in the conversion. |
| 1294 | // |
| 1295 | // Date and time fields that are out-of-range will be treated as errors |
| 1296 | // rather than normalizing them like `absl::CivilSecond` does. For example, |
| 1297 | // it is an error to parse the date "Oct 32, 2013" because 32 is out of range. |
| 1298 | // |
| 1299 | // A leap second of ":60" is normalized to ":00" of the following minute |
| 1300 | // with fractional seconds discarded. The following table shows how the |
| 1301 | // given seconds and subseconds will be parsed: |
| 1302 | // |
| 1303 | // "59.x" -> 59.x // exact |
| 1304 | // "60.x" -> 00.0 // normalized |
| 1305 | // "00.x" -> 00.x // exact |
| 1306 | // |
| 1307 | // Errors are indicated by returning false and assigning an error message |
| 1308 | // to the "err" out param if it is non-null. |
| 1309 | // |
| 1310 | // Note: If the input string is exactly "infinite-future", the returned |
| 1311 | // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned. |
| 1312 | // If the input string is "infinite-past", the returned `absl::Time` will be |
| 1313 | // `absl::InfinitePast()` and `true` will be returned. |
| 1314 | // |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1315 | bool ParseTime(absl::string_view format, absl::string_view input, Time* time, |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1316 | std::string* err); |
| 1317 | |
| 1318 | // Like ParseTime() above, but if the format string does not contain a UTC |
| 1319 | // offset specification (%z/%Ez/%E*z) then the input is interpreted in the |
| 1320 | // given TimeZone. This means that the input, by itself, does not identify a |
| 1321 | // unique instant. Being time-zone dependent, it also admits the possibility |
| 1322 | // of ambiguity or non-existence, in which case the "pre" time (as defined |
| 1323 | // by TimeZone::TimeInfo) is returned. For these reasons we recommend that |
| 1324 | // all date/time strings include a UTC offset so they're context independent. |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1325 | bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz, |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1326 | Time* time, std::string* err); |
| 1327 | |
| 1328 | // ============================================================================ |
| 1329 | // Implementation Details Follow |
| 1330 | // ============================================================================ |
| 1331 | |
| 1332 | namespace time_internal { |
| 1333 | |
| 1334 | // Creates a Duration with a given representation. |
| 1335 | // REQUIRES: hi,lo is a valid representation of a Duration as specified |
| 1336 | // in time/duration.cc. |
| 1337 | constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) { |
| 1338 | return Duration(hi, lo); |
| 1339 | } |
| 1340 | |
| 1341 | constexpr Duration MakeDuration(int64_t hi, int64_t lo) { |
| 1342 | return MakeDuration(hi, static_cast<uint32_t>(lo)); |
| 1343 | } |
| 1344 | |
| 1345 | // Make a Duration value from a floating-point number, as long as that number |
| 1346 | // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as |
| 1347 | // it's positive and can be converted to int64_t without risk of UB. |
| 1348 | inline Duration MakePosDoubleDuration(double n) { |
| 1349 | const int64_t int_secs = static_cast<int64_t>(n); |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1350 | const uint32_t ticks = static_cast<uint32_t>( |
| 1351 | (n - static_cast<double>(int_secs)) * kTicksPerSecond + 0.5); |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1352 | return ticks < kTicksPerSecond |
| 1353 | ? MakeDuration(int_secs, ticks) |
| 1354 | : MakeDuration(int_secs + 1, ticks - kTicksPerSecond); |
| 1355 | } |
| 1356 | |
| 1357 | // Creates a normalized Duration from an almost-normalized (sec,ticks) |
| 1358 | // pair. sec may be positive or negative. ticks must be in the range |
| 1359 | // -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it |
| 1360 | // will be normalized to a positive value in the resulting Duration. |
| 1361 | constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) { |
| 1362 | return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond) |
| 1363 | : MakeDuration(sec, ticks); |
| 1364 | } |
| 1365 | |
| 1366 | // Provide access to the Duration representation. |
| 1367 | constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; } |
| 1368 | constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; } |
| 1369 | |
| 1370 | // Returns true iff d is positive or negative infinity. |
| 1371 | constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; } |
| 1372 | |
| 1373 | // Returns an infinite Duration with the opposite sign. |
| 1374 | // REQUIRES: IsInfiniteDuration(d) |
| 1375 | constexpr Duration OppositeInfinity(Duration d) { |
| 1376 | return GetRepHi(d) < 0 |
| 1377 | ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U) |
| 1378 | : MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U); |
| 1379 | } |
| 1380 | |
| 1381 | // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow. |
| 1382 | constexpr int64_t NegateAndSubtractOne(int64_t n) { |
| 1383 | // Note: Good compilers will optimize this expression to ~n when using |
| 1384 | // a two's-complement representation (which is required for int64_t). |
| 1385 | return (n < 0) ? -(n + 1) : (-n) - 1; |
| 1386 | } |
| 1387 | |
| 1388 | // Map between a Time and a Duration since the Unix epoch. Note that these |
| 1389 | // functions depend on the above mentioned choice of the Unix epoch for the |
| 1390 | // Time representation (and both need to be Time friends). Without this |
| 1391 | // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively. |
| 1392 | constexpr Time FromUnixDuration(Duration d) { return Time(d); } |
| 1393 | constexpr Duration ToUnixDuration(Time t) { return t.rep_; } |
| 1394 | |
| 1395 | template <std::intmax_t N> |
| 1396 | constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) { |
| 1397 | static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio"); |
| 1398 | // Subsecond ratios cannot overflow. |
| 1399 | return MakeNormalizedDuration( |
| 1400 | v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N); |
| 1401 | } |
| 1402 | constexpr Duration FromInt64(int64_t v, std::ratio<60>) { |
| 1403 | return (v <= (std::numeric_limits<int64_t>::max)() / 60 && |
| 1404 | v >= (std::numeric_limits<int64_t>::min)() / 60) |
| 1405 | ? MakeDuration(v * 60) |
| 1406 | : v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
| 1407 | } |
| 1408 | constexpr Duration FromInt64(int64_t v, std::ratio<3600>) { |
| 1409 | return (v <= (std::numeric_limits<int64_t>::max)() / 3600 && |
| 1410 | v >= (std::numeric_limits<int64_t>::min)() / 3600) |
| 1411 | ? MakeDuration(v * 3600) |
| 1412 | : v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
| 1413 | } |
| 1414 | |
| 1415 | // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is |
| 1416 | // valid. That is, if a T can be assigned to an int64_t without narrowing. |
| 1417 | template <typename T> |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1418 | constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) { |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1419 | return true; |
| 1420 | } |
| 1421 | template <typename T> |
| 1422 | constexpr auto IsValidRep64(char) -> bool { |
| 1423 | return false; |
| 1424 | } |
| 1425 | |
| 1426 | // Converts a std::chrono::duration to an absl::Duration. |
| 1427 | template <typename Rep, typename Period> |
| 1428 | constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) { |
| 1429 | static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); |
| 1430 | return FromInt64(int64_t{d.count()}, Period{}); |
| 1431 | } |
| 1432 | |
| 1433 | template <typename Ratio> |
| 1434 | int64_t ToInt64(Duration d, Ratio) { |
| 1435 | // Note: This may be used on MSVC, which may have a system_clock period of |
| 1436 | // std::ratio<1, 10 * 1000 * 1000> |
| 1437 | return ToInt64Seconds(d * Ratio::den / Ratio::num); |
| 1438 | } |
| 1439 | // Fastpath implementations for the 6 common duration units. |
| 1440 | inline int64_t ToInt64(Duration d, std::nano) { |
| 1441 | return ToInt64Nanoseconds(d); |
| 1442 | } |
| 1443 | inline int64_t ToInt64(Duration d, std::micro) { |
| 1444 | return ToInt64Microseconds(d); |
| 1445 | } |
| 1446 | inline int64_t ToInt64(Duration d, std::milli) { |
| 1447 | return ToInt64Milliseconds(d); |
| 1448 | } |
| 1449 | inline int64_t ToInt64(Duration d, std::ratio<1>) { |
| 1450 | return ToInt64Seconds(d); |
| 1451 | } |
| 1452 | inline int64_t ToInt64(Duration d, std::ratio<60>) { |
| 1453 | return ToInt64Minutes(d); |
| 1454 | } |
| 1455 | inline int64_t ToInt64(Duration d, std::ratio<3600>) { |
| 1456 | return ToInt64Hours(d); |
| 1457 | } |
| 1458 | |
| 1459 | // Converts an absl::Duration to a chrono duration of type T. |
| 1460 | template <typename T> |
| 1461 | T ToChronoDuration(Duration d) { |
| 1462 | using Rep = typename T::rep; |
| 1463 | using Period = typename T::period; |
| 1464 | static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); |
| 1465 | if (time_internal::IsInfiniteDuration(d)) |
| 1466 | return d < ZeroDuration() ? (T::min)() : (T::max)(); |
| 1467 | const auto v = ToInt64(d, Period{}); |
| 1468 | if (v > (std::numeric_limits<Rep>::max)()) return (T::max)(); |
| 1469 | if (v < (std::numeric_limits<Rep>::min)()) return (T::min)(); |
| 1470 | return T{v}; |
| 1471 | } |
| 1472 | |
| 1473 | } // namespace time_internal |
| 1474 | |
| 1475 | constexpr Duration Nanoseconds(int64_t n) { |
| 1476 | return time_internal::FromInt64(n, std::nano{}); |
| 1477 | } |
| 1478 | constexpr Duration Microseconds(int64_t n) { |
| 1479 | return time_internal::FromInt64(n, std::micro{}); |
| 1480 | } |
| 1481 | constexpr Duration Milliseconds(int64_t n) { |
| 1482 | return time_internal::FromInt64(n, std::milli{}); |
| 1483 | } |
| 1484 | constexpr Duration Seconds(int64_t n) { |
| 1485 | return time_internal::FromInt64(n, std::ratio<1>{}); |
| 1486 | } |
| 1487 | constexpr Duration Minutes(int64_t n) { |
| 1488 | return time_internal::FromInt64(n, std::ratio<60>{}); |
| 1489 | } |
| 1490 | constexpr Duration Hours(int64_t n) { |
| 1491 | return time_internal::FromInt64(n, std::ratio<3600>{}); |
| 1492 | } |
| 1493 | |
| 1494 | constexpr bool operator<(Duration lhs, Duration rhs) { |
| 1495 | return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs) |
| 1496 | ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs) |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1497 | : time_internal::GetRepHi(lhs) == (std::numeric_limits<int64_t>::min)() |
| 1498 | ? time_internal::GetRepLo(lhs) + 1 < |
| 1499 | time_internal::GetRepLo(rhs) + 1 |
| 1500 | : time_internal::GetRepLo(lhs) < time_internal::GetRepLo(rhs); |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1501 | } |
| 1502 | |
| 1503 | constexpr bool operator==(Duration lhs, Duration rhs) { |
| 1504 | return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) && |
| 1505 | time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs); |
| 1506 | } |
| 1507 | |
| 1508 | constexpr Duration operator-(Duration d) { |
| 1509 | // This is a little interesting because of the special cases. |
| 1510 | // |
| 1511 | // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're |
| 1512 | // dealing with an integral number of seconds, and the only special case is |
| 1513 | // the maximum negative finite duration, which can't be negated. |
| 1514 | // |
| 1515 | // Infinities stay infinite, and just change direction. |
| 1516 | // |
| 1517 | // Finally we're in the case where rep_lo_ is non-zero, and we can borrow |
| 1518 | // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1 |
| 1519 | // is safe). |
| 1520 | return time_internal::GetRepLo(d) == 0 |
| 1521 | ? time_internal::GetRepHi(d) == |
| 1522 | (std::numeric_limits<int64_t>::min)() |
| 1523 | ? InfiniteDuration() |
| 1524 | : time_internal::MakeDuration(-time_internal::GetRepHi(d)) |
| 1525 | : time_internal::IsInfiniteDuration(d) |
| 1526 | ? time_internal::OppositeInfinity(d) |
| 1527 | : time_internal::MakeDuration( |
| 1528 | time_internal::NegateAndSubtractOne( |
| 1529 | time_internal::GetRepHi(d)), |
| 1530 | time_internal::kTicksPerSecond - |
| 1531 | time_internal::GetRepLo(d)); |
| 1532 | } |
| 1533 | |
| 1534 | constexpr Duration InfiniteDuration() { |
| 1535 | return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), |
| 1536 | ~0U); |
| 1537 | } |
| 1538 | |
| 1539 | constexpr Duration FromChrono(const std::chrono::nanoseconds& d) { |
| 1540 | return time_internal::FromChrono(d); |
| 1541 | } |
| 1542 | constexpr Duration FromChrono(const std::chrono::microseconds& d) { |
| 1543 | return time_internal::FromChrono(d); |
| 1544 | } |
| 1545 | constexpr Duration FromChrono(const std::chrono::milliseconds& d) { |
| 1546 | return time_internal::FromChrono(d); |
| 1547 | } |
| 1548 | constexpr Duration FromChrono(const std::chrono::seconds& d) { |
| 1549 | return time_internal::FromChrono(d); |
| 1550 | } |
| 1551 | constexpr Duration FromChrono(const std::chrono::minutes& d) { |
| 1552 | return time_internal::FromChrono(d); |
| 1553 | } |
| 1554 | constexpr Duration FromChrono(const std::chrono::hours& d) { |
| 1555 | return time_internal::FromChrono(d); |
| 1556 | } |
| 1557 | |
| 1558 | constexpr Time FromUnixNanos(int64_t ns) { |
| 1559 | return time_internal::FromUnixDuration(Nanoseconds(ns)); |
| 1560 | } |
| 1561 | |
| 1562 | constexpr Time FromUnixMicros(int64_t us) { |
| 1563 | return time_internal::FromUnixDuration(Microseconds(us)); |
| 1564 | } |
| 1565 | |
| 1566 | constexpr Time FromUnixMillis(int64_t ms) { |
| 1567 | return time_internal::FromUnixDuration(Milliseconds(ms)); |
| 1568 | } |
| 1569 | |
| 1570 | constexpr Time FromUnixSeconds(int64_t s) { |
| 1571 | return time_internal::FromUnixDuration(Seconds(s)); |
| 1572 | } |
| 1573 | |
| 1574 | constexpr Time FromTimeT(time_t t) { |
| 1575 | return time_internal::FromUnixDuration(Seconds(t)); |
| 1576 | } |
| 1577 | |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame] | 1578 | ABSL_NAMESPACE_END |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1579 | } // namespace absl |
| 1580 | |
| 1581 | #endif // ABSL_TIME_TIME_H_ |