blob: 21b3c7edf419a3b1080107c4697216400d98186b [file] [log] [blame]
Austin Schuh3de38b02024-06-25 18:25:10 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2023 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Bicubic interpolation with automatic differentiation
30//
31// We will use estimation of 2d shift as a sample problem for bicubic
32// interpolation.
33//
34// Let us define f(x, y) = x * x - y * x + y * y
35// And optimize cost function sum_i [f(x_i + s_x, y_i + s_y) - v_i]^2
36//
37// Bicubic interpolation of f(x, y) will be exact, thus we can expect close to
38// perfect convergence
39
40#include <utility>
41
42#include "ceres/ceres.h"
43#include "ceres/cubic_interpolation.h"
44#include "glog/logging.h"
45
46using Grid = ceres::Grid2D<double>;
47using Interpolator = ceres::BiCubicInterpolator<Grid>;
48
49// Cost-function using autodiff interface of BiCubicInterpolator
50struct AutoDiffBiCubicCost {
51 EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
52
53 template <typename T>
54 bool operator()(const T* s, T* residual) const {
55 using Vector2T = Eigen::Matrix<T, 2, 1>;
56 Eigen::Map<const Vector2T> shift(s);
57
58 const Vector2T point = point_ + shift;
59
60 T v;
61 interpolator_.Evaluate(point.y(), point.x(), &v);
62
63 *residual = v - value_;
64 return true;
65 }
66
67 AutoDiffBiCubicCost(const Interpolator& interpolator,
68 Eigen::Vector2d point,
69 double value)
70 : point_(std::move(point)), value_(value), interpolator_(interpolator) {}
71
72 static ceres::CostFunction* Create(const Interpolator& interpolator,
73 const Eigen::Vector2d& point,
74 double value) {
75 return new ceres::AutoDiffCostFunction<AutoDiffBiCubicCost, 1, 2>(
76 interpolator, point, value);
77 }
78
79 const Eigen::Vector2d point_;
80 const double value_;
81 const Interpolator& interpolator_;
82};
83
84// Function for input data generation
85static double f(const double& x, const double& y) {
86 return x * x - y * x + y * y;
87}
88
89int main(int argc, char** argv) {
90 google::InitGoogleLogging(argv[0]);
91 // Problem sizes
92 const int kGridRowsHalf = 9;
93 const int kGridColsHalf = 11;
94 const int kGridRows = 2 * kGridRowsHalf + 1;
95 const int kGridCols = 2 * kGridColsHalf + 1;
96 const int kPoints = 4;
97
98 const Eigen::Vector2d shift(1.234, 2.345);
99 const std::array<Eigen::Vector2d, kPoints> points = {
100 Eigen::Vector2d{-2., -3.},
101 Eigen::Vector2d{-2., 3.},
102 Eigen::Vector2d{2., 3.},
103 Eigen::Vector2d{2., -3.}};
104
105 // Data is a row-major array of kGridRows x kGridCols values of function
106 // f(x, y) on the grid, with x in {-kGridColsHalf, ..., +kGridColsHalf},
107 // and y in {-kGridRowsHalf, ..., +kGridRowsHalf}
108 double data[kGridRows * kGridCols];
109 for (int i = 0; i < kGridRows; ++i) {
110 for (int j = 0; j < kGridCols; ++j) {
111 // Using row-major order
112 int index = i * kGridCols + j;
113 double y = i - kGridRowsHalf;
114 double x = j - kGridColsHalf;
115
116 data[index] = f(x, y);
117 }
118 }
119 const Grid grid(data,
120 -kGridRowsHalf,
121 kGridRowsHalf + 1,
122 -kGridColsHalf,
123 kGridColsHalf + 1);
124 const Interpolator interpolator(grid);
125
126 Eigen::Vector2d shift_estimate(3.1415, 1.337);
127
128 ceres::Problem problem;
129 problem.AddParameterBlock(shift_estimate.data(), 2);
130
131 for (const auto& p : points) {
132 const Eigen::Vector2d shifted = p + shift;
133
134 const double v = f(shifted.x(), shifted.y());
135 problem.AddResidualBlock(AutoDiffBiCubicCost::Create(interpolator, p, v),
136 nullptr,
137 shift_estimate.data());
138 }
139
140 ceres::Solver::Options options;
141 options.minimizer_progress_to_stdout = true;
142
143 ceres::Solver::Summary summary;
144 ceres::Solve(options, &problem, &summary);
145 std::cout << summary.BriefReport() << '\n';
146
147 std::cout << "Bicubic interpolation with automatic derivatives:\n";
148 std::cout << "Estimated shift: " << shift_estimate.transpose()
149 << ", ground-truth: " << shift.transpose()
150 << " (error: " << (shift_estimate - shift).transpose() << ")"
151 << std::endl;
152
153 CHECK_LT((shift_estimate - shift).norm(), 1e-9);
154 return 0;
155}