Austin Schuh | 8bd9632 | 2020-02-13 21:18:22 -0800 | [diff] [blame] | 1 | #include "aos/events/logging/logger.h" |
| 2 | |
| 3 | #include "Eigen/Dense" |
| 4 | |
Austin Schuh | 2f8fd75 | 2020-09-01 22:38:28 -0700 | [diff] [blame] | 5 | #include "third_party/gmp/gmpxx.h" |
| 6 | |
Austin Schuh | 8bd9632 | 2020-02-13 21:18:22 -0800 | [diff] [blame] | 7 | namespace aos { |
| 8 | namespace logger { |
| 9 | |
Austin Schuh | 2f8fd75 | 2020-09-01 22:38:28 -0700 | [diff] [blame] | 10 | namespace { |
| 11 | Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> ToDouble( |
| 12 | Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> in) { |
| 13 | Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> result = |
| 14 | Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Zero(in.rows(), |
| 15 | in.cols()); |
| 16 | for (int i = 0; i < in.rows(); ++i) { |
| 17 | for (int j = 0; j < in.cols(); ++j) { |
| 18 | result(i, j) = in(i, j).get_d(); |
| 19 | } |
| 20 | } |
| 21 | return result; |
| 22 | } |
| 23 | |
| 24 | std::tuple<Eigen::Matrix<double, Eigen::Dynamic, 1>, |
| 25 | Eigen::Matrix<double, Eigen::Dynamic, 1>> |
| 26 | Solve(const Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> &mpq_map, |
| 27 | const Eigen::Matrix<mpq_class, Eigen::Dynamic, 1> &mpq_offsets) { |
| 28 | aos::monotonic_clock::time_point start_time = aos::monotonic_clock::now(); |
| 29 | // Least squares solve for the slopes and offsets. |
| 30 | const Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> inv = |
| 31 | (mpq_map.transpose() * mpq_map).inverse() * mpq_map.transpose(); |
| 32 | aos::monotonic_clock::time_point end_time = aos::monotonic_clock::now(); |
| 33 | |
| 34 | VLOG(1) << "Took " |
| 35 | << std::chrono::duration<double>(end_time - start_time).count() |
| 36 | << " seconds to invert"; |
| 37 | |
| 38 | Eigen::Matrix<mpq_class, Eigen::Dynamic, 1> mpq_solution_slope = |
| 39 | inv.block(0, 0, inv.rows(), 1); |
| 40 | Eigen::Matrix<mpq_class, Eigen::Dynamic, 1> mpq_solution_offset = |
| 41 | inv.block(0, 1, inv.rows(), inv.cols() - 1) * |
| 42 | mpq_offsets.block(1, 0, inv.rows() - 1, 1); |
| 43 | |
| 44 | mpq_solution_offset *= mpq_class(1, 1000000000); |
| 45 | |
| 46 | return std::make_tuple(ToDouble(mpq_solution_slope), |
| 47 | ToDouble(mpq_solution_offset)); |
| 48 | } |
| 49 | } // namespace |
| 50 | |
Austin Schuh | 8bd9632 | 2020-02-13 21:18:22 -0800 | [diff] [blame] | 51 | // This is slow to compile, so we put it in a separate file. More parallelism |
| 52 | // and less change. |
Austin Schuh | 2f8fd75 | 2020-09-01 22:38:28 -0700 | [diff] [blame] | 53 | std::tuple<Eigen::Matrix<double, Eigen::Dynamic, 1>, |
| 54 | Eigen::Matrix<double, Eigen::Dynamic, 1>> |
| 55 | LogReader::SolveOffsets() { |
| 56 | // TODO(austin): Split this out and unit tests a bit better. When we do |
| 57 | // partial node subsets and also try to optimize this again would be a good |
| 58 | // time. |
| 59 | // |
| 60 | // TODO(austin): CHECK that the number doesn't change over time. We can freak |
| 61 | // out if that happens. |
| 62 | |
| 63 | // Start by counting how many node pairs we have an offset estimated for. |
| 64 | int nonzero_offset_count = 1; |
| 65 | for (int i = 1; i < valid_matrix_.rows(); ++i) { |
| 66 | if (valid_matrix_(i) != 0) { |
| 67 | ++nonzero_offset_count; |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | Eigen::IOFormat HeavyFmt(Eigen::FullPrecision, 0, ", ", ";\n", "[", "]", "[", |
| 72 | "]"); |
| 73 | |
| 74 | // If there are missing rows, we can't solve the original problem and instead |
| 75 | // need to filter the matrix to remove the missing rows and solve a simplified |
| 76 | // problem. What this means practically is that we might have pairs of nodes |
| 77 | // which are communicating, but we don't have timestamps between. But we can |
| 78 | // have multiple paths in our graph between 2 nodes, so we can still solve |
| 79 | // time without the missing timestamp. |
| 80 | // |
| 81 | // In the following example, we can drop any of the last 3 rows, and still |
| 82 | // solve. |
| 83 | // |
| 84 | // [1/3 1/3 1/3 ] [ta] [t_distributed] |
| 85 | // [ 1 -1-m1 0 ] [tb] = [oab] |
| 86 | // [ 1 0 -1-m2 ] [tc] [oac] |
| 87 | // [ 0 1 -1-m2 ] [obc] |
| 88 | if (nonzero_offset_count != offset_matrix_.rows()) { |
| 89 | Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> mpq_map = |
| 90 | Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
| 91 | nonzero_offset_count, map_matrix_.cols()); |
| 92 | Eigen::Matrix<mpq_class, Eigen::Dynamic, 1> mpq_offsets = |
| 93 | Eigen::Matrix<mpq_class, Eigen::Dynamic, 1>::Zero(nonzero_offset_count); |
| 94 | |
| 95 | std::vector<bool> valid_nodes(nodes_count(), false); |
| 96 | |
| 97 | size_t destination_row = 0; |
| 98 | for (int j = 0; j < map_matrix_.cols(); ++j) { |
| 99 | mpq_map(0, j) = mpq_class(1, map_matrix_.cols()); |
| 100 | } |
| 101 | mpq_offsets(0) = mpq_class(0); |
| 102 | ++destination_row; |
| 103 | |
| 104 | for (int i = 1; i < offset_matrix_.rows(); ++i) { |
| 105 | // Copy over the first row, i.e. the row which says that all times average |
| 106 | // to the distributed time. And then copy over all valid rows. |
| 107 | if (valid_matrix_(i)) { |
| 108 | mpq_offsets(destination_row) = mpq_class(offset_matrix_(i)); |
| 109 | |
| 110 | for (int j = 0; j < map_matrix_.cols(); ++j) { |
| 111 | mpq_map(destination_row, j) = map_matrix_(i, j) + slope_matrix_(i, j); |
| 112 | if (mpq_map(destination_row, j) != 0) { |
| 113 | valid_nodes[j] = true; |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | ++destination_row; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | VLOG(1) << "Filtered map " << ToDouble(mpq_map).format(HeavyFmt); |
| 122 | VLOG(1) << "Filtered offsets " << ToDouble(mpq_offsets).format(HeavyFmt); |
| 123 | |
| 124 | // Compute (and cache) the current connectivity. If we have N nodes |
| 125 | // configured, but logs only from one of them, we want to assume that the |
| 126 | // rest of the nodes match the distributed clock exactly. |
| 127 | // |
| 128 | // If data shows up later for them, we will CHECK when time jumps. |
| 129 | // |
| 130 | // TODO(austin): Once we have more info on what cases are reasonable, we can |
| 131 | // open up the restrictions. |
| 132 | if (valid_matrix_ != last_valid_matrix_) { |
| 133 | Eigen::FullPivLU<Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic>> |
| 134 | full_piv(mpq_map); |
| 135 | const size_t connected_nodes = full_piv.rank(); |
| 136 | |
| 137 | size_t valid_node_count = 0; |
| 138 | for (size_t i = 0; i < valid_nodes.size(); ++i) { |
| 139 | const bool valid_node = valid_nodes[i]; |
| 140 | if (valid_node) { |
| 141 | ++valid_node_count; |
| 142 | } else { |
| 143 | LOG(WARNING) |
| 144 | << "Node " |
| 145 | << logged_configuration()->nodes()->Get(i)->name()->string_view() |
| 146 | << " has no observations, setting to distributed clock."; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | // Confirm that the set of nodes we have connected matches the rank. |
| 151 | // Otherwise a<->b and c<->d would count as 4 but really is 3. |
| 152 | CHECK_EQ(std::max(static_cast<size_t>(1u), valid_node_count), |
| 153 | connected_nodes) |
| 154 | << ": Ambiguous nodes."; |
| 155 | |
| 156 | last_valid_matrix_ = valid_matrix_; |
| 157 | cached_valid_node_count_ = valid_node_count; |
| 158 | } |
| 159 | |
| 160 | // There are 2 cases. Either all the nodes are connected with each other by |
| 161 | // actual data, or we have isolated nodes. We want to force the isolated |
| 162 | // nodes to match the distributed clock exactly, and to solve for the other |
| 163 | // nodes. |
| 164 | if (cached_valid_node_count_ == 0) { |
| 165 | // Cheat. If there are no valid nodes, the slopes are 1, and offset is 0, |
| 166 | // ie, just be the distributed clock. |
| 167 | return std::make_tuple( |
| 168 | Eigen::Matrix<double, Eigen::Dynamic, 1>::Ones(nodes_count()), |
| 169 | Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(nodes_count())); |
Austin Schuh | 1179e7f | 2020-10-03 00:06:04 -0700 | [diff] [blame] | 170 | } else if (cached_valid_node_count_ == nodes_count()) { |
Austin Schuh | 2f8fd75 | 2020-09-01 22:38:28 -0700 | [diff] [blame] | 171 | return Solve(mpq_map, mpq_offsets); |
Austin Schuh | 1179e7f | 2020-10-03 00:06:04 -0700 | [diff] [blame] | 172 | } else { |
| 173 | // Strip out any columns (nodes) which aren't relevant. Solve the |
| 174 | // simplified problem, then set any nodes which were missing back to slope |
| 175 | // 1, offset 0 (ie the distributed clock). |
| 176 | Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> |
| 177 | valid_node_mpq_map = |
| 178 | Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic>::Zero( |
| 179 | nonzero_offset_count, cached_valid_node_count_); |
| 180 | |
| 181 | { |
| 182 | // Only copy over the columns with valid nodes in them. |
| 183 | size_t column = 0; |
| 184 | for (size_t i = 0; i < valid_nodes.size(); ++i) { |
| 185 | if (valid_nodes[i]) { |
| 186 | valid_node_mpq_map.col(column) = mpq_map.col(i); |
| 187 | |
| 188 | ++column; |
| 189 | } |
| 190 | } |
| 191 | // The 1/n needs to be based on the number of nodes being solved. |
| 192 | // Recreate it here. |
| 193 | for (int j = 0; j < valid_node_mpq_map.cols(); ++j) { |
| 194 | valid_node_mpq_map(0, j) = mpq_class(1, cached_valid_node_count_); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | VLOG(1) << "Reduced node filtered map " |
| 199 | << ToDouble(valid_node_mpq_map).format(HeavyFmt); |
| 200 | VLOG(1) << "Reduced node filtered offsets " |
| 201 | << ToDouble(mpq_offsets).format(HeavyFmt); |
| 202 | |
| 203 | // Solve the simplified problem now. |
| 204 | std::tuple<Eigen::Matrix<double, Eigen::Dynamic, 1>, |
| 205 | Eigen::Matrix<double, Eigen::Dynamic, 1>> |
| 206 | valid_result = Solve(valid_node_mpq_map, mpq_offsets); |
| 207 | |
| 208 | // And expand the results back into a solution matrix. |
| 209 | std::tuple<Eigen::Matrix<double, Eigen::Dynamic, 1>, |
| 210 | Eigen::Matrix<double, Eigen::Dynamic, 1>> |
| 211 | result = std::make_tuple( |
| 212 | Eigen::Matrix<double, Eigen::Dynamic, 1>::Ones(nodes_count()), |
| 213 | Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(nodes_count())); |
| 214 | |
| 215 | { |
| 216 | size_t column = 0; |
| 217 | for (size_t i = 0; i < valid_nodes.size(); ++i) { |
| 218 | if (valid_nodes[i]) { |
| 219 | std::get<0>(result)(i) = std::get<0>(valid_result)(column); |
| 220 | std::get<1>(result)(i) = std::get<1>(valid_result)(column); |
| 221 | |
| 222 | ++column; |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | return result; |
Austin Schuh | 2f8fd75 | 2020-09-01 22:38:28 -0700 | [diff] [blame] | 228 | } |
| 229 | } else { |
| 230 | const Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> mpq_map = |
| 231 | map_matrix_ + slope_matrix_; |
| 232 | VLOG(1) << "map " << (map_matrix_ + slope_matrix_).format(HeavyFmt); |
| 233 | VLOG(1) << "offsets " << offset_matrix_.format(HeavyFmt); |
| 234 | |
| 235 | return Solve(mpq_map, offset_matrix_); |
| 236 | } |
Austin Schuh | 8bd9632 | 2020-02-13 21:18:22 -0800 | [diff] [blame] | 237 | } |
| 238 | |
| 239 | } // namespace logger |
| 240 | } // namespace aos |