Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 1 | #!/usr/bin/python3 |
| 2 | |
| 3 | from frc971.control_loops.python import control_loop |
| 4 | from frc971.control_loops.python import controls |
| 5 | import numpy |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 6 | import osqp |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 7 | import math |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 8 | import scipy.optimize |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 9 | import sys |
| 10 | import math |
| 11 | from y2022.control_loops.python import catapult_lib |
| 12 | from matplotlib import pylab |
| 13 | |
| 14 | import gflags |
| 15 | import glog |
| 16 | |
| 17 | FLAGS = gflags.FLAGS |
| 18 | |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 19 | gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 20 | |
| 21 | ball_mass = 0.25 |
| 22 | ball_diameter = 9.5 * 0.0254 |
| 23 | lever = 17.5 * 0.0254 |
| 24 | |
| 25 | G = (14.0 / 72.0) * (12.0 / 33.0) |
| 26 | |
| 27 | |
| 28 | def AddResistance(motor, resistance): |
| 29 | motor.resistance += resistance |
| 30 | return motor |
| 31 | |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 32 | |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 33 | J_ball = 1.5 * ball_mass * lever * lever |
| 34 | # Assuming carbon fiber, calculate the mass of the bar. |
| 35 | M_bar = (1750 * lever * 0.0254 * 0.0254 * (1.0 - (1 - 0.07)**2.0)) |
| 36 | # And the moment of inertia. |
| 37 | J_bar = 1.0 / 3.0 * M_bar * lever**2.0 |
| 38 | |
| 39 | # Do the same for a theoretical cup. Assume a 40 thou thick carbon cup. |
| 40 | M_cup = (1750 * 0.0254 * 0.04 * 2 * math.pi * (ball_diameter / 2.)**2.0) |
| 41 | J_cup = M_cup * lever**2.0 + M_cup * (ball_diameter / 2.)**2.0 |
| 42 | |
| 43 | print("J ball", ball_mass * lever * lever) |
| 44 | print("J bar", J_bar) |
| 45 | print("bar mass", M_bar) |
| 46 | print("J cup", J_cup) |
| 47 | print("cup mass", M_cup) |
| 48 | |
| 49 | J = (J_ball + J_bar + J_cup * 1.5) |
| 50 | print("J", J) |
| 51 | |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 52 | kCatapult = catapult_lib.CatapultParams( |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 53 | name='Catapult', |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 54 | motor=AddResistance(control_loop.NMotor(control_loop.Falcon(), 2), 0.03), |
| 55 | G=G, |
| 56 | J=J, |
| 57 | lever=lever, |
| 58 | q_pos=0.01, |
| 59 | q_vel=10.0, |
| 60 | q_voltage=4.0, |
| 61 | r_pos=0.01, |
| 62 | controller_poles=[.93], |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 63 | dt=0.00505) |
| 64 | |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 65 | # Ideas for adjusting the cost function: |
| 66 | # |
| 67 | # Penalize battery current? |
| 68 | # Penalize accel/rotor current? |
| 69 | # Penalize velocity error off destination? |
| 70 | # Penalize max u |
| 71 | # |
| 72 | # Ramp up U cost over time? |
| 73 | # Once moving, open up saturation bounds |
| 74 | # |
| 75 | # We really want our cost function to be robust so that we can tolerate the |
| 76 | # battery not delivering like we want at the end. |
| 77 | |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 78 | def quadratic_cost(catapult, X_initial, X_final, horizon): |
| 79 | Q_final = numpy.matrix([[10000.0, 0.0], [0.0, 10000.0]]) |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 80 | |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 81 | As = numpy.vstack([catapult.A**(n + 1) for n in range(0, horizon)]) |
| 82 | Af = catapult.A**horizon |
| 83 | |
| 84 | Bs = numpy.matrix(numpy.zeros((2 * horizon, horizon))) |
| 85 | for n in range(0, horizon): |
| 86 | for m in range(0, n + 1): |
| 87 | Bs[n * 2:(n * 2) + 2, m] = catapult.A**(n - m) * catapult.B |
| 88 | |
| 89 | Bf = Bs[horizon * 2 - 2:, :] |
| 90 | |
| 91 | P_final = 2.0 * Bf.transpose() * Q_final * Bf |
| 92 | q_final = (2.0 * (Af * X_initial - X_final).transpose() * Q_final * |
| 93 | Bf).transpose() |
| 94 | |
| 95 | constant_final = (Af * X_initial - X_final).transpose() * Q_final * ( |
| 96 | Af * X_initial - X_final) |
| 97 | |
| 98 | m = numpy.matrix([[catapult.A[1, 1] ** (n + 1)] for n in range(horizon)]) |
| 99 | M = Bs[1:horizon * 2:2, :] |
| 100 | |
| 101 | W = numpy.matrix(numpy.identity(horizon) - numpy.eye(horizon, horizon, -1)) / catapult.dt |
| 102 | w = -numpy.matrix(numpy.eye(horizon, 1, 0)) / catapult.dt |
| 103 | |
| 104 | |
| 105 | Pi = numpy.diag([ |
| 106 | (0.01 ** 2.0) + (0.02 * max(0.0, 20 - (horizon - n)) / 20.0) ** 2.0 for n in range(horizon) |
| 107 | ]) |
| 108 | |
| 109 | P_accel = 2.0 * M.transpose() * W.transpose() * Pi * W * M |
| 110 | q_accel = 2.0 * (((W * m + w) * X_initial[1, 0]).transpose() * Pi * W * M).transpose() |
| 111 | constant_accel = ((W * m + w) * X_initial[1, 0]).transpose() * Pi * ( |
| 112 | (W * m + w) * X_initial[1, 0]) |
| 113 | |
| 114 | return ((P_accel + P_final), (q_accel + q_final), (constant_accel + constant_final)) |
| 115 | |
| 116 | |
| 117 | def new_cost(catapult, X_initial, X_final, u): |
| 118 | u_matrix = numpy.matrix(u).transpose() |
| 119 | Q_final = numpy.matrix([[10000.0, 0.0], [0.0, 10000.0]]) |
| 120 | |
| 121 | As = numpy.vstack([catapult.A**(n + 1) for n in range(0, len(u))]) |
| 122 | Af = catapult.A**len(u) |
| 123 | |
| 124 | Bs = numpy.matrix(numpy.zeros((2 * len(u), len(u)))) |
| 125 | for n in range(0, len(u)): |
| 126 | for m in range(0, n + 1): |
| 127 | Bs[n * 2:(n * 2) + 2, m] = catapult.A**(n - m) * catapult.B |
| 128 | |
| 129 | Bf = Bs[len(u) * 2 - 2:, :] |
| 130 | |
| 131 | P_final = 2.0 * Bf.transpose() * Q_final * Bf |
| 132 | q_final = (2.0 * (Af * X_initial - X_final).transpose() * Q_final * |
| 133 | Bf).transpose() |
| 134 | |
| 135 | constant_final = (Af * X_initial - X_final).transpose() * Q_final * ( |
| 136 | Af * X_initial - X_final) |
| 137 | |
| 138 | m = numpy.matrix([[catapult.A[1, 1] ** (n + 1)] for n in range(len(u))]) |
| 139 | M = Bs[1:len(u) * 2:2, :] |
| 140 | |
| 141 | W = numpy.matrix(numpy.identity(len(u)) - numpy.eye(len(u), len(u), -1)) / catapult.dt |
| 142 | w = -numpy.matrix(numpy.eye(len(u), 1, 0)) * X_initial[1, 0] / catapult.dt |
| 143 | |
| 144 | accel = W * (M * u_matrix + m * X_initial[1, 0]) + w |
| 145 | |
| 146 | Pi = numpy.diag([ |
| 147 | (0.01 ** 2.0) + (0.02 * max(0.0, 20 - (len(u) - n)) / 20.0) ** 2.0 for n in range(len(u)) |
| 148 | ]) |
| 149 | |
| 150 | P_accel = 2.0 * M.transpose() * W.transpose() * Pi * W * M |
| 151 | q_accel = 2.0 * ((W * m * X_initial[1, 0] + w).transpose() * Pi * W * M).transpose() |
| 152 | constant_accel = (W * m * X_initial[1, 0] + |
| 153 | w).transpose() * Pi * (W * m * X_initial[1, 0] + w) |
| 154 | |
| 155 | |
| 156 | def mpc_cost(catapult, X_initial, X_final, u_matrix): |
| 157 | |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 158 | X = X_initial.copy() |
| 159 | cost = 0.0 |
| 160 | last_u = u_matrix[0] |
| 161 | max_u = 0.0 |
| 162 | for count, u in enumerate(u_matrix): |
| 163 | v_prior = X[1, 0] |
| 164 | X = catapult.A * X + catapult.B * numpy.matrix([[u]]) |
| 165 | v = X[1, 0] |
| 166 | |
| 167 | # Smoothness cost on voltage change and voltage. |
| 168 | #cost += (u - last_u) ** 2.0 |
| 169 | #cost += (u - 6.0) ** 2.0 |
| 170 | |
| 171 | measured_a = (v - v_prior) / catapult.dt |
| 172 | expected_a = 0.0 |
| 173 | |
| 174 | # Our good cost! |
| 175 | cost_scalar = 0.02 * max(0.0, (20 - (len(u_matrix) - count)) / 20.) |
| 176 | cost += ((measured_a - expected_a) * cost_scalar)**2.0 |
| 177 | cost += (measured_a * 0.010)**2.0 |
| 178 | |
| 179 | # Quadratic cost. This delays as long as possible, but approximates a |
| 180 | # LQR until saturation. |
| 181 | #cost += (u - 0.0) ** 2.0 |
| 182 | #cost += (0.1 * (X_final[0, 0] - X[0, 0])) ** 2.0 |
| 183 | #cost += (0.5 * (X_final[1, 0] - X[1, 0])) ** 2.0 |
| 184 | |
| 185 | max_u = max(u, max_u) |
| 186 | last_u = u |
| 187 | |
| 188 | # Penalize max power usage. This is hard to solve. |
| 189 | #cost += max_u * 10 |
| 190 | |
| 191 | terminal_cost = (X - X_final).transpose() * numpy.matrix( |
| 192 | [[10000.0, 0.0], [0.0, 10000.0]]) * (X - X_final) |
| 193 | cost += terminal_cost[0, 0] |
| 194 | |
| 195 | return cost |
| 196 | |
| 197 | |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 198 | def SolveCatapult(catapult, X_initial, X_final, u): |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 199 | """ Solves for the optimal action given a seed, state, and target """ |
| 200 | def vbat_constraint(z, i): |
| 201 | return 12.0 - z[i] |
| 202 | |
| 203 | def forward(z, i): |
| 204 | return z[i] |
| 205 | |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 206 | P, q, c = quadratic_cost(catapult, X_initial, X_final, len(u)) |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 207 | |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 208 | |
| 209 | def mpc_cost2(u_solver): |
| 210 | u_matrix = numpy.matrix(u_solver).transpose() |
| 211 | cost = mpc_cost(catapult, X_initial, X_final, u_solver) |
| 212 | return cost |
| 213 | |
| 214 | |
| 215 | def mpc_cost3(u_solver): |
| 216 | u_matrix = numpy.matrix(u_solver).transpose() |
| 217 | return (0.5 * u_matrix.transpose() * P * u_matrix + |
| 218 | q.transpose() * u_matrix + c)[0, 0] |
| 219 | |
| 220 | # If we provide scipy with the analytical jacobian and hessian, it solves |
| 221 | # more accurately and a *lot* faster. |
| 222 | def jacobian(u): |
| 223 | u_matrix = numpy.matrix(u).transpose() |
| 224 | return numpy.array(P * u_matrix + q) |
| 225 | |
| 226 | def hessian(u): |
| 227 | return numpy.array(P) |
| 228 | |
| 229 | constraints = [] |
| 230 | constraints += [{ |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 231 | 'type': 'ineq', |
| 232 | 'fun': vbat_constraint, |
| 233 | 'args': (i, ) |
| 234 | } for i in numpy.arange(len(u))] |
| 235 | |
| 236 | constraints += [{ |
| 237 | 'type': 'ineq', |
| 238 | 'fun': forward, |
| 239 | 'args': (i, ) |
| 240 | } for i in numpy.arange(len(u))] |
| 241 | |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 242 | result = scipy.optimize.minimize(mpc_cost3, |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 243 | u, |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 244 | jac=jacobian, |
| 245 | hess=hessian, |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 246 | method='SLSQP', |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 247 | tol=1e-12, |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 248 | constraints=constraints) |
| 249 | print(result) |
| 250 | |
| 251 | return result.x |
| 252 | |
| 253 | |
| 254 | def CatapultProblem(): |
| 255 | c = catapult_lib.Catapult(kCatapult) |
| 256 | |
| 257 | kHorizon = 40 |
| 258 | |
| 259 | u = [0.0] * kHorizon |
| 260 | X_initial = numpy.matrix([[0.0], [0.0]]) |
| 261 | X_final = numpy.matrix([[2.0], [25.0]]) |
| 262 | |
| 263 | |
| 264 | X_initial = numpy.matrix([[0.0], [0.0]]) |
| 265 | X = X_initial.copy() |
| 266 | |
| 267 | t_samples = [0.0] |
| 268 | x_samples = [0.0] |
| 269 | v_samples = [0.0] |
| 270 | a_samples = [0.0] |
| 271 | |
| 272 | # Iteratively solve our MPC and simulate it. |
| 273 | u_samples = [] |
| 274 | for i in range(kHorizon): |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 275 | u_horizon = SolveCatapult(c, X, X_final, u) |
| 276 | |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 277 | u_samples.append(u_horizon[0]) |
| 278 | v_prior = X[1, 0] |
| 279 | X = c.A * X + c.B * numpy.matrix([[u_horizon[0]]]) |
| 280 | v = X[1, 0] |
| 281 | t_samples.append(t_samples[-1] + c.dt) |
| 282 | x_samples.append(X[0, 0]) |
| 283 | v_samples.append(X[1, 0]) |
| 284 | a_samples.append((v - v_prior) / c.dt) |
| 285 | |
| 286 | u = u_horizon[1:] |
| 287 | |
| 288 | print('Final state', X.transpose()) |
| 289 | print('Final velocity', X[1, 0] * lever) |
| 290 | pylab.subplot(2, 1, 1) |
| 291 | pylab.plot(t_samples, x_samples, label="x") |
| 292 | pylab.plot(t_samples, v_samples, label="v") |
| 293 | pylab.plot(t_samples[1:], u_samples, label="u") |
| 294 | pylab.legend() |
| 295 | pylab.subplot(2, 1, 2) |
| 296 | pylab.plot(t_samples, a_samples, label="a") |
| 297 | pylab.legend() |
| 298 | |
| 299 | pylab.show() |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 300 | |
| 301 | |
| 302 | def main(argv): |
| 303 | # Do all our math with a lower voltage so we have headroom. |
| 304 | U = numpy.matrix([[9.0]]) |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 305 | |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 306 | prob = osqp.OSQP() |
| 307 | |
| 308 | kHorizon = 40 |
| 309 | catapult = catapult_lib.Catapult(kCatapult) |
| 310 | X_initial = numpy.matrix([[0.0], [0.0]]) |
| 311 | X_final = numpy.matrix([[2.0], [25.0]]) |
| 312 | P, q, c = quadratic_cost(catapult, X_initial, X_final, kHorizon) |
| 313 | A = numpy.identity(kHorizon) |
| 314 | l = numpy.zeros((kHorizon, 1)) |
| 315 | u = numpy.ones((kHorizon, 1)) * 12.0 |
| 316 | |
| 317 | prob.setup(scipy.sparse.csr_matrix(P), |
| 318 | q, |
| 319 | scipy.sparse.csr_matrix(A), |
| 320 | l, |
| 321 | u, |
| 322 | warm_start=True) |
| 323 | |
| 324 | result = prob.solve() |
| 325 | # Check solver status |
| 326 | if result.info.status != 'solved': |
| 327 | raise ValueError('OSQP did not solve the problem!') |
| 328 | |
| 329 | # Apply first control input to the plant |
| 330 | print(result.x) |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 331 | |
| 332 | if FLAGS.plot: |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 333 | print( |
| 334 | "For G:", G, " max speed ", |
| 335 | catapult_lib.MaxSpeed(params=kCatapult, |
| 336 | U=U, |
| 337 | final_position=math.pi / 2.0)) |
| 338 | |
| 339 | CatapultProblem() |
| 340 | return 0 |
| 341 | |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 342 | catapult_lib.PlotShot(kCatapult, U, final_position=math.pi / 4.0) |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 343 | |
| 344 | gs = [] |
| 345 | speed = [] |
| 346 | for i in numpy.linspace(0.01, 0.15, 150): |
Austin Schuh | c3e0428 | 2022-02-12 20:00:53 -0800 | [diff] [blame] | 347 | kCatapult.G = i |
| 348 | gs.append(kCatapult.G) |
| 349 | speed.append( |
| 350 | catapult_lib.MaxSpeed(params=kCatapult, |
| 351 | U=U, |
| 352 | final_position=math.pi / 2.0)) |
| 353 | pylab.plot(gs, speed, label="max_speed") |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 354 | pylab.show() |
Austin Schuh | 2e28d87 | 2022-02-19 18:25:57 -0800 | [diff] [blame^] | 355 | |
| 356 | if len(argv) != 5: |
| 357 | glog.fatal( |
| 358 | 'Expected .h file name and .cc file name for the catapult and integral catapult.' |
| 359 | ) |
| 360 | else: |
| 361 | namespaces = ['y2022', 'control_loops', 'superstructure', 'catapult'] |
| 362 | catapult_lib.WriteCatapult(kCatapult, argv[1:3], argv[3:5], namespaces) |
| 363 | return 0 |
Austin Schuh | 8216245 | 2022-02-07 22:01:45 -0800 | [diff] [blame] | 364 | |
| 365 | |
| 366 | if __name__ == '__main__': |
| 367 | argv = FLAGS(sys.argv) |
| 368 | sys.exit(main(argv)) |