blob: 1a435044576d30da83e909fc96e336dd39e0c660 [file] [log] [blame]
Austin Schuh2dd86a92022-09-14 21:19:23 -07001#include "parser_test.h"
2
3#include <cmath>
4#include <string>
5
6#include "flatbuffers/idl.h"
7#include "test_assert.h"
8
9namespace flatbuffers {
10namespace tests {
11namespace {
12
13// Shortcuts for the infinity.
14static const auto infinity_f = std::numeric_limits<float>::infinity();
15static const auto infinity_d = std::numeric_limits<double>::infinity();
16
17// Test that parser errors are actually generated.
18static void TestError_(const char *src, const char *error_substr, bool strict_json,
19 const char *file, int line, const char *func) {
20 flatbuffers::IDLOptions opts;
21 opts.strict_json = strict_json;
22 flatbuffers::Parser parser(opts);
23 if (parser.Parse(src)) {
24 TestFail("true", "false",
25 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
26 func);
27 } else if (!strstr(parser.error_.c_str(), error_substr)) {
28 TestFail(error_substr, parser.error_.c_str(),
29 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
30 func);
31 }
32}
33
34static void TestError_(const char *src, const char *error_substr, const char *file,
35 int line, const char *func) {
36 TestError_(src, error_substr, false, file, line, func);
37}
38
39#ifdef _WIN32
40# define TestError(src, ...) \
41 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
42#else
43# define TestError(src, ...) \
44 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
45#endif
46
47static bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
48
49} // namespace
50
51// Test that parsing errors occur as we'd expect.
52// Also useful for coverage, making sure these paths are run.
53void ErrorTest() {
54 // In order they appear in idl_parser.cpp
55 TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
56 TestError("\"\0", "illegal");
57 TestError("\"\\q", "escape code");
58 TestError("table ///", "documentation");
59 TestError("@", "illegal");
60 TestError("table 1", "expecting");
61 TestError("table X { Y:[[int]]; }", "nested vector");
62 TestError("table X { Y:1; }", "illegal type");
63 TestError("table X { Y:int; Y:int; }", "field already");
64 TestError("table Y {} table X { Y:int; }", "same as table");
65 TestError("struct X { Y:string; }", "only scalar");
66 TestError("struct X { a:uint = 42; }", "default values");
67 TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
68 TestError("struct X { Y:int (deprecated); }", "deprecate");
69 TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
70 "missing type field");
71 TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
72 "type id");
73 TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
74 TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
75 TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
76 true);
77 TestError(
78 "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
79 "{ V:{ Y:1 } }",
80 "wrong number");
81 TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
82 "unknown enum value");
83 TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
84 TestError("enum X:byte { Y } enum X {", "enum already");
85 TestError("enum X:float {}", "underlying");
86 TestError("enum X:byte { Y, Y }", "value already");
87 TestError("enum X:byte { Y=2, Z=2 }", "unique");
88 TestError("enum X:byte (force_align: 4) { Y }", "force_align");
89 TestError("table X { Y:int; } table X {", "datatype already");
90 TestError("table X { } union X { }", "datatype already");
91 TestError("union X { } table X { }", "datatype already");
92 TestError("namespace A; table X { } namespace A; union X { }",
93 "datatype already");
94 TestError("namespace A; union X { } namespace A; table X { }",
95 "datatype already");
96 TestError("struct X (force_align: 7) { Y:int; }", "force_align");
97 TestError("struct X {}", "size 0");
98 TestError("{}", "no root");
99 TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
100 TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
101 "end of file");
102 TestError("root_type X;", "unknown root");
103 TestError("struct X { Y:int; } root_type X;", "a table");
104 TestError("union X { Y }", "referenced");
105 TestError("union Z { X } struct X { Y:int; }", "only tables");
106 TestError("table X { Y:[int]; YLength:int; }", "clash");
107 TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
108 // float to integer conversion is forbidden
109 TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
110 TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
111 TestError("enum X:bool { Y = true }", "must be integral");
112 // Array of non-scalar
113 TestError("table X { x:int; } struct Y { y:[X:2]; }",
114 "may contain only scalar or struct fields");
115 // Non-snake case field names
116 TestError("table X { Y: int; } root_type Y: {Y:1.0}", "snake_case");
117 // Complex defaults
118 TestError("table X { y: string = 1; }", "expecting: string");
119 TestError("table X { y: string = []; }", " Cannot assign token");
120 TestError("table X { y: [int] = [1]; }", "Expected `]`");
121 TestError("table X { y: [int] = [; }", "Expected `]`");
122 TestError("table X { y: [int] = \"\"; }", "type mismatch");
123 // An identifier can't start from sign (+|-)
124 TestError("table X { -Y: int; } root_type Y: {Y:1.0}", "identifier");
125 TestError("table X { +Y: int; } root_type Y: {Y:1.0}", "identifier");
126}
127
128void EnumOutOfRangeTest() {
129 TestError("enum X:byte { Y = 128 }", "enum value does not fit");
130 TestError("enum X:byte { Y = -129 }", "enum value does not fit");
131 TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
132 TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
133 TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
134 TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
135 TestError("table Y{} union X { Y = -1 }", "enum value does not fit");
136 TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
137 TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
138 TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
139 TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
140 TestError("enum X:uint { Y = -1 }", "enum value does not fit");
141 TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
142 TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
143 TestError("enum X:long { Y = 9223372036854775807, Z }",
144 "enum value does not fit");
145 TestError("enum X:ulong { Y = -1 }", "does not fit");
146 TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
147 TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128
148 // bit_flgs out of range
149 TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }",
150 "out of range");
151}
152
153void IntegerOutOfRangeTest() {
154 TestError("table T { F:byte; } root_type T; { F:128 }",
155 "constant does not fit");
156 TestError("table T { F:byte; } root_type T; { F:-129 }",
157 "constant does not fit");
158 TestError("table T { F:ubyte; } root_type T; { F:256 }",
159 "constant does not fit");
160 TestError("table T { F:ubyte; } root_type T; { F:-1 }",
161 "constant does not fit");
162 TestError("table T { F:short; } root_type T; { F:32768 }",
163 "constant does not fit");
164 TestError("table T { F:short; } root_type T; { F:-32769 }",
165 "constant does not fit");
166 TestError("table T { F:ushort; } root_type T; { F:65536 }",
167 "constant does not fit");
168 TestError("table T { F:ushort; } root_type T; { F:-1 }",
169 "constant does not fit");
170 TestError("table T { F:int; } root_type T; { F:2147483648 }",
171 "constant does not fit");
172 TestError("table T { F:int; } root_type T; { F:-2147483649 }",
173 "constant does not fit");
174 TestError("table T { F:uint; } root_type T; { F:4294967296 }",
175 "constant does not fit");
176 TestError("table T { F:uint; } root_type T; { F:-1 }",
177 "constant does not fit");
178 // Check fixed width aliases
179 TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
180 TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
181 TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
182 TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
183 TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
184 TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
185 "does not fit");
186 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
187 TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
188 "does not fit");
189 TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
190 "does not fit");
191
192 TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
193 TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
194 TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
195 TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
196 TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
197 TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
198 "does not fit");
199 TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
200 "does not fit");
201 TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
202 "does not fit");
203 // check out-of-int64 as int8
204 TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
205 "does not fit");
206 TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
207 "does not fit");
208
209 // Check default values
210 TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
211 "does not fit");
212 TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
213 "does not fit");
214 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
215 TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
216 "does not fit");
217 TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
218 "does not fit");
219}
220
221void InvalidFloatTest() {
222 auto invalid_msg = "invalid number";
223 auto comma_msg = "expecting: ,";
224 TestError("table T { F:float; } root_type T; { F:1,0 }", "");
225 TestError("table T { F:float; } root_type T; { F:. }", "");
226 TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
227 TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
228 TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
229 TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
230 TestError("table T { F:float; } root_type T; { F:.e }", "");
231 TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
232 TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
233 TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
234 TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
235 TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
236 TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
237 TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
238 TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
239 // exponent pP is mandatory for hex-float
240 TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
241 TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
242 TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
243 TestError("table T { F:float; } root_type T; { F:0Xe }", invalid_msg);
244 TestError("table T { F:float; } root_type T; { F:\"0Xe\" }", invalid_msg);
245 TestError("table T { F:float; } root_type T; { F:\"nan(1)\" }", invalid_msg);
246 // eE not exponent in hex-float!
247 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
248 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
249 TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
250 TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
251 TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
252 TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
253 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
254 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
255 TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
256 TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
257 TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
258 TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
259 TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
260 TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
261 TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
262 TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
263 TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
264 TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
265 TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
266 TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
267 TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
268 TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
269 TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
270 TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
271 // floats in string
272 TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
273 TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
274 TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
275 TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
276 TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
277 TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
278 // disable escapes for "number-in-string"
279 TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
280 TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
281 TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
282 TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
283 TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
284 TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
285 // null is not a number constant!
286 TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
287 TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
288}
289
290void UnicodeInvalidSurrogatesTest() {
291 TestError(
292 "table T { F:string; }"
293 "root_type T;"
294 "{ F:\"\\uD800\"}",
295 "unpaired high surrogate");
296 TestError(
297 "table T { F:string; }"
298 "root_type T;"
299 "{ F:\"\\uD800abcd\"}",
300 "unpaired high surrogate");
301 TestError(
302 "table T { F:string; }"
303 "root_type T;"
304 "{ F:\"\\uD800\\n\"}",
305 "unpaired high surrogate");
306 TestError(
307 "table T { F:string; }"
308 "root_type T;"
309 "{ F:\"\\uD800\\uD800\"}",
310 "multiple high surrogates");
311 TestError(
312 "table T { F:string; }"
313 "root_type T;"
314 "{ F:\"\\uDC00\"}",
315 "unpaired low surrogate");
316}
317
318void InvalidUTF8Test() {
319 // "1 byte" pattern, under min length of 2 bytes
320 TestError(
321 "table T { F:string; }"
322 "root_type T;"
323 "{ F:\"\x80\"}",
324 "illegal UTF-8 sequence");
325 // 2 byte pattern, string too short
326 TestError(
327 "table T { F:string; }"
328 "root_type T;"
329 "{ F:\"\xDF\"}",
330 "illegal UTF-8 sequence");
331 // 3 byte pattern, string too short
332 TestError(
333 "table T { F:string; }"
334 "root_type T;"
335 "{ F:\"\xEF\xBF\"}",
336 "illegal UTF-8 sequence");
337 // 4 byte pattern, string too short
338 TestError(
339 "table T { F:string; }"
340 "root_type T;"
341 "{ F:\"\xF7\xBF\xBF\"}",
342 "illegal UTF-8 sequence");
343 // "5 byte" pattern, string too short
344 TestError(
345 "table T { F:string; }"
346 "root_type T;"
347 "{ F:\"\xFB\xBF\xBF\xBF\"}",
348 "illegal UTF-8 sequence");
349 // "6 byte" pattern, string too short
350 TestError(
351 "table T { F:string; }"
352 "root_type T;"
353 "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
354 "illegal UTF-8 sequence");
355 // "7 byte" pattern, string too short
356 TestError(
357 "table T { F:string; }"
358 "root_type T;"
359 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
360 "illegal UTF-8 sequence");
361 // "5 byte" pattern, over max length of 4 bytes
362 TestError(
363 "table T { F:string; }"
364 "root_type T;"
365 "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
366 "illegal UTF-8 sequence");
367 // "6 byte" pattern, over max length of 4 bytes
368 TestError(
369 "table T { F:string; }"
370 "root_type T;"
371 "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
372 "illegal UTF-8 sequence");
373 // "7 byte" pattern, over max length of 4 bytes
374 TestError(
375 "table T { F:string; }"
376 "root_type T;"
377 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
378 "illegal UTF-8 sequence");
379
380 // Three invalid encodings for U+000A (\n, aka NEWLINE)
381 TestError(
382 "table T { F:string; }"
383 "root_type T;"
384 "{ F:\"\xC0\x8A\"}",
385 "illegal UTF-8 sequence");
386 TestError(
387 "table T { F:string; }"
388 "root_type T;"
389 "{ F:\"\xE0\x80\x8A\"}",
390 "illegal UTF-8 sequence");
391 TestError(
392 "table T { F:string; }"
393 "root_type T;"
394 "{ F:\"\xF0\x80\x80\x8A\"}",
395 "illegal UTF-8 sequence");
396
397 // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
398 TestError(
399 "table T { F:string; }"
400 "root_type T;"
401 "{ F:\"\xE0\x81\xA9\"}",
402 "illegal UTF-8 sequence");
403 TestError(
404 "table T { F:string; }"
405 "root_type T;"
406 "{ F:\"\xF0\x80\x81\xA9\"}",
407 "illegal UTF-8 sequence");
408
409 // Invalid encoding for U+20AC (EURO SYMBOL)
410 TestError(
411 "table T { F:string; }"
412 "root_type T;"
413 "{ F:\"\xF0\x82\x82\xAC\"}",
414 "illegal UTF-8 sequence");
415
416 // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
417 // UTF-8
418 TestError(
419 "table T { F:string; }"
420 "root_type T;"
421 // U+10400 "encoded" as U+D801 U+DC00
422 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
423 "illegal UTF-8 sequence");
424
425 // Check independence of identifier from locale.
426 std::string locale_ident;
427 locale_ident += "table T { F";
428 locale_ident += static_cast<char>(-32); // unsigned 0xE0
429 locale_ident += " :string; }";
430 locale_ident += "root_type T;";
431 locale_ident += "{}";
432 TestError(locale_ident.c_str(), "");
433}
434
435template<typename T>
436T TestValue(const char *json, const char *type_name,
437 const char *decls = nullptr) {
438 flatbuffers::Parser parser;
439 parser.builder_.ForceDefaults(true); // return defaults
440 auto check_default = json ? false : true;
441 if (check_default) { parser.opts.output_default_scalars_in_json = true; }
442 // Simple schema.
443 std::string schema = std::string(decls ? decls : "") + "\n" +
444 "table X { y:" + std::string(type_name) +
445 "; } root_type X;";
446 auto schema_done = parser.Parse(schema.c_str());
447 TEST_EQ_STR(parser.error_.c_str(), "");
448 TEST_EQ(schema_done, true);
449
450 auto done = parser.Parse(check_default ? "{}" : json);
451 TEST_EQ_STR(parser.error_.c_str(), "");
452 TEST_EQ(done, true);
453
454 // Check with print.
455 std::string print_back;
456 parser.opts.indent_step = -1;
457 TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
458 true);
459 // restore value from its default
460 if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
461
462 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
463 parser.builder_.GetBufferPointer());
464 return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
465}
466
467// Additional parser testing not covered elsewhere.
468void ValueTest() {
469 // Test scientific notation numbers.
470 TEST_EQ(
471 FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
472 true);
473 // number in string
474 TEST_EQ(FloatCompare(TestValue<float>("{ y:\"0.0314159e+2\" }", "float"),
475 3.14159f),
476 true);
477
478 // Test conversion functions.
479 TEST_EQ(FloatCompare(TestValue<float>("{ y:cos(rad(180)) }", "float"), -1),
480 true);
481
482 // int embedded to string
483 TEST_EQ(TestValue<int>("{ y:\"-876\" }", "int=-123"), -876);
484 TEST_EQ(TestValue<int>("{ y:\"876\" }", "int=-123"), 876);
485
486 // Test negative hex constant.
487 TEST_EQ(TestValue<int>("{ y:-0x8ea0 }", "int=-0x8ea0"), -36512);
488 TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
489
490 // positive hex constant
491 TEST_EQ(TestValue<int>("{ y:0x1abcdef }", "int=0x1"), 0x1abcdef);
492 // with optional '+' sign
493 TEST_EQ(TestValue<int>("{ y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
494 // hex in string
495 TEST_EQ(TestValue<int>("{ y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
496
497 // Make sure we do unsigned 64bit correctly.
498 TEST_EQ(TestValue<uint64_t>("{ y:12335089644688340133 }", "ulong"),
499 12335089644688340133ULL);
500
501 // bool in string
502 TEST_EQ(TestValue<bool>("{ y:\"false\" }", "bool=true"), false);
503 TEST_EQ(TestValue<bool>("{ y:\"true\" }", "bool=\"true\""), true);
504 TEST_EQ(TestValue<bool>("{ y:'false' }", "bool=true"), false);
505 TEST_EQ(TestValue<bool>("{ y:'true' }", "bool=\"true\""), true);
506
507 // check comments before and after json object
508 TEST_EQ(TestValue<int>("/*before*/ { y:1 } /*after*/", "int"), 1);
509 TEST_EQ(TestValue<int>("//before \n { y:1 } //after", "int"), 1);
510}
511
512void NestedListTest() {
513 flatbuffers::Parser parser1;
514 TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
515 "root_type T;"
516 "{ F:[ [10,20], [30,40]] }"),
517 true);
518}
519
520void EnumStringsTest() {
521 flatbuffers::Parser parser1;
522 TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
523 "root_type T;"
524 "{ F:[ A, B, \"C\", \"A B C\" ] }"),
525 true);
526 flatbuffers::Parser parser2;
527 TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
528 "root_type T;"
529 "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
530 true);
531 // unsigned bit_flags
532 flatbuffers::Parser parser3;
533 TEST_EQ(
534 parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
535 " table T { F: E = \"F15 F08\"; }"
536 "root_type T;"),
537 true);
538}
539
540void EnumValueTest() {
541 // json: "{ Y:0 }", schema: table X { y: "E"}
542 // 0 in enum (V=0) E then Y=0 is valid.
543 TEST_EQ(TestValue<int>("{ y:0 }", "E", "enum E:int { V }"), 0);
544 TEST_EQ(TestValue<int>("{ y:V }", "E", "enum E:int { V }"), 0);
545 // A default value of Y is 0.
546 TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
547 TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { V=5 }"), 5);
548 // Generate json with defaults and check.
549 TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
550 // 5 in enum
551 TEST_EQ(TestValue<int>("{ y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
552 TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
553 // Generate json with defaults and check.
554 TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
555 TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
556 // u84 test
557 TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
558 "enum E:ulong { V = 13835058055282163712 }"),
559 13835058055282163712ULL);
560 TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
561 "enum E:ulong { V = 18446744073709551615 }"),
562 18446744073709551615ULL);
563 // Assign non-enum value to enum field. Is it right?
564 TEST_EQ(TestValue<int>("{ y:7 }", "E", "enum E:int { V = 0 }"), 7);
565 // Check that non-ascending values are valid.
566 TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z=10, V=5 }"), 5);
567}
568
569void IntegerBoundaryTest() {
570 // Check numerical compatibility with non-C++ languages.
571 // By the C++ standard, std::numerical_limits<int64_t>::min() ==
572 // -9223372036854775807 (-2^63+1) or less* The Flatbuffers grammar and most of
573 // the languages (C#, Java, Rust) expect that minimum values are: -128,
574 // -32768,.., -9223372036854775808. Since C++20,
575 // static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement
576 // cast. Therefore -9223372036854775808 should be valid negative value.
577 TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
578 TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
579 TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
580 TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
581 TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
582 TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
583 TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
584 -9223372036854775807LL);
585 TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
586 TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
587 TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
588 TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
589 TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
590 18446744073709551615ULL);
591
592 TEST_EQ(TestValue<int8_t>("{ y:127 }", "byte"), 127);
593 TEST_EQ(TestValue<int8_t>("{ y:-128 }", "byte"), -128);
594 TEST_EQ(TestValue<uint8_t>("{ y:255 }", "ubyte"), 255);
595 TEST_EQ(TestValue<uint8_t>("{ y:0 }", "ubyte"), 0);
596 TEST_EQ(TestValue<int16_t>("{ y:32767 }", "short"), 32767);
597 TEST_EQ(TestValue<int16_t>("{ y:-32768 }", "short"), -32768);
598 TEST_EQ(TestValue<uint16_t>("{ y:65535 }", "ushort"), 65535);
599 TEST_EQ(TestValue<uint16_t>("{ y:0 }", "ushort"), 0);
600 TEST_EQ(TestValue<int32_t>("{ y:2147483647 }", "int"), 2147483647);
601 TEST_EQ(TestValue<int32_t>("{ y:-2147483648 }", "int") + 1, -2147483647);
602 TEST_EQ(TestValue<uint32_t>("{ y:4294967295 }", "uint"), 4294967295);
603 TEST_EQ(TestValue<uint32_t>("{ y:0 }", "uint"), 0);
604 TEST_EQ(TestValue<int64_t>("{ y:9223372036854775807 }", "long"),
605 9223372036854775807LL);
606 TEST_EQ(TestValue<int64_t>("{ y:-9223372036854775808 }", "long") + 1LL,
607 -9223372036854775807LL);
608 TEST_EQ(TestValue<uint64_t>("{ y:18446744073709551615 }", "ulong"),
609 18446744073709551615ULL);
610 TEST_EQ(TestValue<uint64_t>("{ y:0 }", "ulong"), 0);
611 TEST_EQ(TestValue<uint64_t>("{ y: 18446744073709551615 }", "uint64"),
612 18446744073709551615ULL);
613 // check that the default works
614 TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
615 18446744073709551615ULL);
616}
617
618void ValidFloatTest() {
619 // check rounding to infinity
620 TEST_EQ(TestValue<float>("{ y:+3.4029e+38 }", "float"), +infinity_f);
621 TEST_EQ(TestValue<float>("{ y:-3.4029e+38 }", "float"), -infinity_f);
622 TEST_EQ(TestValue<double>("{ y:+1.7977e+308 }", "double"), +infinity_d);
623 TEST_EQ(TestValue<double>("{ y:-1.7977e+308 }", "double"), -infinity_d);
624
625 TEST_EQ(
626 FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
627 true);
628 // float in string
629 TEST_EQ(FloatCompare(TestValue<float>("{ y:\" 0.0314159e+2 \" }", "float"),
630 3.14159f),
631 true);
632
633 TEST_EQ(TestValue<float>("{ y:1 }", "float"), 1.0f);
634 TEST_EQ(TestValue<float>("{ y:1.0 }", "float"), 1.0f);
635 TEST_EQ(TestValue<float>("{ y:1. }", "float"), 1.0f);
636 TEST_EQ(TestValue<float>("{ y:+1. }", "float"), 1.0f);
637 TEST_EQ(TestValue<float>("{ y:-1. }", "float"), -1.0f);
638 TEST_EQ(TestValue<float>("{ y:1.e0 }", "float"), 1.0f);
639 TEST_EQ(TestValue<float>("{ y:1.e+0 }", "float"), 1.0f);
640 TEST_EQ(TestValue<float>("{ y:1.e-0 }", "float"), 1.0f);
641 TEST_EQ(TestValue<float>("{ y:0.125 }", "float"), 0.125f);
642 TEST_EQ(TestValue<float>("{ y:.125 }", "float"), 0.125f);
643 TEST_EQ(TestValue<float>("{ y:-.125 }", "float"), -0.125f);
644 TEST_EQ(TestValue<float>("{ y:+.125 }", "float"), +0.125f);
645 TEST_EQ(TestValue<float>("{ y:5 }", "float"), 5.0f);
646 TEST_EQ(TestValue<float>("{ y:\"5\" }", "float"), 5.0f);
647
648#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
649 // Old MSVC versions may have problem with this check.
650 // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
651 TEST_EQ(TestValue<double>("{ y:6.9294956446009195e15 }", "double"),
652 6929495644600920.0);
653 // check nan's
654 TEST_EQ(std::isnan(TestValue<double>("{ y:nan }", "double")), true);
655 TEST_EQ(std::isnan(TestValue<float>("{ y:nan }", "float")), true);
656 TEST_EQ(std::isnan(TestValue<float>("{ y:\"nan\" }", "float")), true);
657 TEST_EQ(std::isnan(TestValue<float>("{ y:\"+nan\" }", "float")), true);
658 TEST_EQ(std::isnan(TestValue<float>("{ y:\"-nan\" }", "float")), true);
659 TEST_EQ(std::isnan(TestValue<float>("{ y:+nan }", "float")), true);
660 TEST_EQ(std::isnan(TestValue<float>("{ y:-nan }", "float")), true);
661 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
662 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
663 // check inf
664 TEST_EQ(TestValue<float>("{ y:inf }", "float"), infinity_f);
665 TEST_EQ(TestValue<float>("{ y:\"inf\" }", "float"), infinity_f);
666 TEST_EQ(TestValue<float>("{ y:\"-inf\" }", "float"), -infinity_f);
667 TEST_EQ(TestValue<float>("{ y:\"+inf\" }", "float"), infinity_f);
668 TEST_EQ(TestValue<float>("{ y:+inf }", "float"), infinity_f);
669 TEST_EQ(TestValue<float>("{ y:-inf }", "float"), -infinity_f);
670 TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinity_f);
671 TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinity_f);
672 TestValue<double>(
673 "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
674 "3.0e2] }",
675 "[double]");
676 TestValue<float>(
677 "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
678 "3.0e2] }",
679 "[float]");
680
681 // Test binary format of float point.
682 // https://en.cppreference.com/w/cpp/language/floating_literal
683 // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
684 TEST_EQ(TestValue<double>("{ y:0x12.34p-1 }", "double"), 9.1015625);
685 // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
686 TEST_EQ(TestValue<float>("{ y:-0x0.2p0 }", "float"), -0.125f);
687 TEST_EQ(TestValue<float>("{ y:-0x.2p1 }", "float"), -0.25f);
688 TEST_EQ(TestValue<float>("{ y:0x1.2p3 }", "float"), 9.0f);
689 TEST_EQ(TestValue<float>("{ y:0x10.1p0 }", "float"), 16.0625f);
690 TEST_EQ(TestValue<double>("{ y:0x1.2p3 }", "double"), 9.0);
691 TEST_EQ(TestValue<double>("{ y:0x10.1p0 }", "double"), 16.0625);
692 TEST_EQ(TestValue<double>("{ y:0xC.68p+2 }", "double"), 49.625);
693 TestValue<double>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
694 TestValue<float>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
695
696#else // FLATBUFFERS_HAS_NEW_STRTOD
697 TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
698#endif // !FLATBUFFERS_HAS_NEW_STRTOD
699}
700
701void UnicodeTest() {
702 flatbuffers::Parser parser;
703 // Without setting allow_non_utf8 = true, we treat \x sequences as byte
704 // sequences which are then validated as UTF-8.
705 TEST_EQ(parser.Parse("table T { F:string; }"
706 "root_type T;"
707 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
708 "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
709 "3D\\uDE0E\" }"),
710 true);
711 std::string jsongen;
712 parser.opts.indent_step = -1;
713 auto result =
714 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
715 TEST_EQ(result, true);
716 TEST_EQ_STR(jsongen.c_str(),
717 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
718 "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
719}
720
721void UnicodeTestAllowNonUTF8() {
722 flatbuffers::Parser parser;
723 parser.opts.allow_non_utf8 = true;
724 TEST_EQ(
725 parser.Parse(
726 "table T { F:string; }"
727 "root_type T;"
728 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
729 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
730 true);
731 std::string jsongen;
732 parser.opts.indent_step = -1;
733 auto result =
734 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
735 TEST_EQ(result, true);
736 TEST_EQ_STR(
737 jsongen.c_str(),
738 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
739 "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
740}
741
742void UnicodeTestGenerateTextFailsOnNonUTF8() {
743 flatbuffers::Parser parser;
744 // Allow non-UTF-8 initially to model what happens when we load a binary
745 // flatbuffer from disk which contains non-UTF-8 strings.
746 parser.opts.allow_non_utf8 = true;
747 TEST_EQ(
748 parser.Parse(
749 "table T { F:string; }"
750 "root_type T;"
751 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
752 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
753 true);
754 std::string jsongen;
755 parser.opts.indent_step = -1;
756 // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
757 // failure.
758 parser.opts.allow_non_utf8 = false;
759 auto result =
760 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
761 TEST_EQ(result, false);
762}
763
764void UnicodeSurrogatesTest() {
765 flatbuffers::Parser parser;
766
767 TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
768 "root_type T;"
769 "{ F:\"\\uD83D\\uDCA9\"}"),
770 true);
771 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
772 parser.builder_.GetBufferPointer());
773 auto string = root->GetPointer<flatbuffers::String *>(
774 flatbuffers::FieldIndexToOffset(0));
775 TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
776}
777
778
779
780void UnknownFieldsTest() {
781 flatbuffers::IDLOptions opts;
782 opts.skip_unexpected_fields_in_json = true;
783 flatbuffers::Parser parser(opts);
784
785 TEST_EQ(parser.Parse("table T { str:string; i:int;}"
786 "root_type T;"
787 "{ str:\"test\","
788 "unknown_string:\"test\","
789 "\"unknown_string\":\"test\","
790 "unknown_int:10,"
791 "unknown_float:1.0,"
792 "unknown_array: [ 1, 2, 3, 4],"
793 "unknown_object: { i: 10 },"
794 "\"unknown_object\": { \"i\": 10 },"
795 "i:10}"),
796 true);
797
798 std::string jsongen;
799 parser.opts.indent_step = -1;
800 auto result =
801 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
802 TEST_EQ(result, true);
803 TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
804}
805
806void ParseUnionTest() {
807 // Unions must be parseable with the type field following the object.
808 flatbuffers::Parser parser;
809 TEST_EQ(parser.Parse("table T { A:int; }"
810 "union U { T }"
811 "table V { X:U; }"
812 "root_type V;"
813 "{ X:{ A:1 }, X_type: T }"),
814 true);
815 // Unions must be parsable with prefixed namespace.
816 flatbuffers::Parser parser2;
817 TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
818 "table B { e:U; } root_type B;"
819 "{ e_type: N_A, e: {} }"),
820 true);
821}
822
823void ValidSameNameDifferentNamespaceTest() {
824 // Duplicate table names in different namespaces must be parsable
825 TEST_ASSERT(flatbuffers::Parser().Parse(
826 "namespace A; table X {} namespace B; table X {}"));
827 // Duplicate union names in different namespaces must be parsable
828 TEST_ASSERT(flatbuffers::Parser().Parse(
829 "namespace A; union X {} namespace B; union X {}"));
830 // Clashing table and union names in different namespaces must be parsable
831 TEST_ASSERT(flatbuffers::Parser().Parse(
832 "namespace A; table X {} namespace B; union X {}"));
833 TEST_ASSERT(flatbuffers::Parser().Parse(
834 "namespace A; union X {} namespace B; table X {}"));
835}
836
837void WarningsAsErrorsTest() {
838 {
839 flatbuffers::IDLOptions opts;
840 // opts.warnings_as_errors should default to false
841 flatbuffers::Parser parser(opts);
842 TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
843 "root_type T;"),
844 true);
845 }
846 {
847 flatbuffers::IDLOptions opts;
848 opts.warnings_as_errors = true;
849 flatbuffers::Parser parser(opts);
850 TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
851 "root_type T;"),
852 false);
853 }
854}
855
856void StringVectorDefaultsTest() {
857 std::vector<std::string> schemas;
858 schemas.push_back("table Monster { mana: string = \"\"; }");
859 schemas.push_back("table Monster { mana: string = \"mystr\"; }");
860 schemas.push_back("table Monster { mana: string = \" \"; }");
861 schemas.push_back("table Monster { mana: string = \"null\"; }");
862 schemas.push_back("table Monster { mana: [int] = []; }");
863 schemas.push_back("table Monster { mana: [uint] = [ ]; }");
864 schemas.push_back("table Monster { mana: [byte] = [\t\t\n]; }");
865 schemas.push_back("enum E:int{}table Monster{mana:[E]=[];}");
866 for (auto s = schemas.begin(); s < schemas.end(); s++) {
867 flatbuffers::Parser parser;
868 TEST_ASSERT(parser.Parse(s->c_str()));
869 const auto *mana = parser.structs_.Lookup("Monster")->fields.Lookup("mana");
870 TEST_EQ(mana->IsDefault(), true);
871 }
872}
873
874void FieldIdentifierTest() {
875 using flatbuffers::Parser;
876 TEST_EQ(true, Parser().Parse("table T{ f: int (id:0); }"));
877 // non-integer `id` should be rejected
878 TEST_EQ(false, Parser().Parse("table T{ f: int (id:text); }"));
879 TEST_EQ(false, Parser().Parse("table T{ f: int (id:\"text\"); }"));
880 TEST_EQ(false, Parser().Parse("table T{ f: int (id:0text); }"));
881 TEST_EQ(false, Parser().Parse("table T{ f: int (id:1.0); }"));
882 TEST_EQ(false, Parser().Parse("table T{ f: int (id:-1); g: int (id:0); }"));
883 TEST_EQ(false, Parser().Parse("table T{ f: int (id:129496726); }"));
884 // A unuion filed occupys two ids: enumerator + pointer (offset).
885 TEST_EQ(false,
886 Parser().Parse("union X{} table T{ u: X(id:0); table F{x:int;\n}"));
887 // Positive tests for unions
888 TEST_EQ(true, Parser().Parse("union X{} table T{ u: X (id:1); }"));
889 TEST_EQ(true, Parser().Parse("union X{} table T{ u: X; }"));
890 // Test using 'inf' and 'nan' words both as identifiers and as default values.
891 TEST_EQ(true, Parser().Parse("table T{ nan: string; }"));
892 TEST_EQ(true, Parser().Parse("table T{ inf: string; }"));
893#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
894 TEST_EQ(true, Parser().Parse("table T{ inf: float = inf; }"));
895 TEST_EQ(true, Parser().Parse("table T{ nan: float = inf; }"));
896#endif
897}
898
899} // namespace tests
900} // namespace flatbuffers