blob: a57f2112dc7da256a4e86a03b95015abfe840c40 [file] [log] [blame]
Brian Silvermanc71537c2016-01-01 13:43:14 -08001#!/usr/bin/python
2
3from frc971.control_loops.python import control_loop
4from frc971.control_loops.python import controls
5import numpy
6import sys
7import argparse
8from matplotlib import pylab
9
10import gflags
11import glog
12
13FLAGS = gflags.FLAGS
14
15gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
16
Brian Silvermanc71537c2016-01-01 13:43:14 -080017
18class Drivetrain(control_loop.ControlLoop):
19 def __init__(self, name="Drivetrain", left_low=True, right_low=True):
20 super(Drivetrain, self).__init__(name)
21 # Number of motors per side
22 self.num_motors = 2
23 # Stall Torque in N m
24 self.stall_torque = 2.42 * self.num_motors * 0.60
25 # Stall Current in Amps
26 self.stall_current = 133.0 * self.num_motors
27 # Free Speed in RPM. Used number from last year.
28 self.free_speed = 5500.0
29 # Free Current in Amps
30 self.free_current = 4.7 * self.num_motors
31 # Moment of inertia of the drivetrain in kg m^2
32 self.J = 1.5
33 # Mass of the robot, in kg.
34 self.m = 30
35 # Radius of the robot, in meters (from last year).
36 self.rb = 0.647998644 / 2.0
37 # Radius of the wheels, in meters.
38 self.r = .04445
39 # Resistance of the motor, divided by the number of motors.
40 self.resistance = 12.0 / self.stall_current
41 # Motor velocity constant
42 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
43 (12.0 - self.resistance * self.free_current))
44 # Torque constant
45 self.Kt = self.stall_torque / self.stall_current
46 # Gear ratios
47 self.G_low = 15.0 / 60.0 * 15.0 / 50.0
48 self.G_high = 30.0 / 45.0 * 15.0 / 50.0
49 if left_low:
50 self.Gl = self.G_low
51 else:
52 self.Gl = self.G_high
53 if right_low:
54 self.Gr = self.G_low
55 else:
56 self.Gr = self.G_high
57
58 # Control loop time step
59 self.dt = 0.005
60
61 # These describe the way that a given side of a robot will be influenced
62 # by the other side. Units of 1 / kg.
63 self.msp = 1.0 / self.m + self.rb * self.rb / self.J
64 self.msn = 1.0 / self.m - self.rb * self.rb / self.J
65 # The calculations which we will need for A and B.
66 self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance * self.r * self.r)
67 self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance * self.r * self.r)
68 self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
69 self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
70
71 # State feedback matrices
72 # X will be of the format
73 # [[positionl], [velocityl], [positionr], velocityr]]
74 self.A_continuous = numpy.matrix(
75 [[0, 1, 0, 0],
76 [0, self.msp * self.tcl, 0, self.msn * self.tcr],
77 [0, 0, 0, 1],
78 [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
79 self.B_continuous = numpy.matrix(
80 [[0, 0],
81 [self.msp * self.mpl, self.msn * self.mpr],
82 [0, 0],
83 [self.msn * self.mpl, self.msp * self.mpr]])
84 self.C = numpy.matrix([[1, 0, 0, 0],
85 [0, 0, 1, 0]])
86 self.D = numpy.matrix([[0, 0],
87 [0, 0]])
88
89 self.A, self.B = self.ContinuousToDiscrete(
90 self.A_continuous, self.B_continuous, self.dt)
91
92 q_pos = 0.12
93 q_vel = 1.0
94 self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
95 [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
96 [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
97 [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
98
99 self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
100 [0.0, (1.0 / (12.0 ** 2.0))]])
101 self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
102
103 glog.debug('DT K %s', name)
104 glog.debug(str(self.K))
105 glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
106
107 self.hlp = 0.3
108 self.llp = 0.4
109 self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
110
111 self.U_max = numpy.matrix([[12.0], [12.0]])
112 self.U_min = numpy.matrix([[-12.0], [-12.0]])
113 self.InitializeState()
114
115
116class KFDrivetrain(Drivetrain):
117 def __init__(self, name="KFDrivetrain", left_low=True, right_low=True):
118 super(KFDrivetrain, self).__init__(name, left_low, right_low)
119
120 self.unaugmented_A_continuous = self.A_continuous
121 self.unaugmented_B_continuous = self.B_continuous
122
123 # The states are
124 # The practical voltage applied to the wheels is
125 # V_left = U_left + left_voltage_error
126 #
127 # [left position, left velocity, right position, right velocity,
128 # left voltage error, right voltage error, angular_error]
129 self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
130 self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
131 self.A_continuous[0:4,0:4] = self.unaugmented_A_continuous
132 self.A_continuous[0:4,4:6] = self.unaugmented_B_continuous
133 self.B_continuous[0:4,0:2] = self.unaugmented_B_continuous
134 self.A_continuous[0,6] = 1
135 self.A_continuous[2,6] = -1
136
137 self.A, self.B = self.ContinuousToDiscrete(
138 self.A_continuous, self.B_continuous, self.dt)
139
140 self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
141 [0, 0, 1, 0, 0, 0, 0],
142 [0, -0.5 / self.rb, 0, 0.5 / self.rb, 0, 0, 0]])
143
144 self.D = numpy.matrix([[0, 0],
145 [0, 0],
146 [0, 0]])
147
148 q_pos = 0.05
149 q_vel = 1.00
150 q_voltage = 10.0
151 q_encoder_uncertainty = 2.00
152
153 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
154 [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
155 [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
156 [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
157 [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0, 0.0],
158 [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
159 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty ** 2.0)]])
160
161 r_pos = 0.0001
162 r_gyro = 0.000001
163 self.R = numpy.matrix([[(r_pos ** 2.0), 0.0, 0.0],
164 [0.0, (r_pos ** 2.0), 0.0],
165 [0.0, 0.0, (r_gyro ** 2.0)]])
166
167 # Solving for kf gains.
168 self.KalmanGain, self.Q_steady = controls.kalman(
169 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
170
171 self.L = self.A * self.KalmanGain
172
173 # We need a nothing controller for the autogen code to be happy.
174 self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
175
176
177def main(argv):
178 argv = FLAGS(argv)
179
180 # Simulate the response of the system to a step input.
181 drivetrain = Drivetrain()
182 simulated_left = []
183 simulated_right = []
184 for _ in xrange(100):
185 drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
186 simulated_left.append(drivetrain.X[0, 0])
187 simulated_right.append(drivetrain.X[2, 0])
188
189 if FLAGS.plot:
190 pylab.plot(range(100), simulated_left)
191 pylab.plot(range(100), simulated_right)
192 pylab.show()
193
194 # Simulate forwards motion.
195 drivetrain = Drivetrain()
196 close_loop_left = []
197 close_loop_right = []
198 R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
199 for _ in xrange(100):
200 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
201 drivetrain.U_min, drivetrain.U_max)
202 drivetrain.UpdateObserver(U)
203 drivetrain.Update(U)
204 close_loop_left.append(drivetrain.X[0, 0])
205 close_loop_right.append(drivetrain.X[2, 0])
206
207 if FLAGS.plot:
208 pylab.plot(range(100), close_loop_left)
209 pylab.plot(range(100), close_loop_right)
210 pylab.show()
211
212 # Try turning in place
213 drivetrain = Drivetrain()
214 close_loop_left = []
215 close_loop_right = []
216 R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
217 for _ in xrange(100):
218 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
219 drivetrain.U_min, drivetrain.U_max)
220 drivetrain.UpdateObserver(U)
221 drivetrain.Update(U)
222 close_loop_left.append(drivetrain.X[0, 0])
223 close_loop_right.append(drivetrain.X[2, 0])
224
225 if FLAGS.plot:
226 pylab.plot(range(100), close_loop_left)
227 pylab.plot(range(100), close_loop_right)
228 pylab.show()
229
230 # Try turning just one side.
231 drivetrain = Drivetrain()
232 close_loop_left = []
233 close_loop_right = []
234 R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
235 for _ in xrange(100):
236 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
237 drivetrain.U_min, drivetrain.U_max)
238 drivetrain.UpdateObserver(U)
239 drivetrain.Update(U)
240 close_loop_left.append(drivetrain.X[0, 0])
241 close_loop_right.append(drivetrain.X[2, 0])
242
243 if FLAGS.plot:
244 pylab.plot(range(100), close_loop_left)
245 pylab.plot(range(100), close_loop_right)
246 pylab.show()
247
248 # Write the generated constants out to a file.
249 drivetrain_low_low = Drivetrain(
250 name="DrivetrainLowLow", left_low=True, right_low=True)
251 drivetrain_low_high = Drivetrain(
252 name="DrivetrainLowHigh", left_low=True, right_low=False)
253 drivetrain_high_low = Drivetrain(
254 name="DrivetrainHighLow", left_low=False, right_low=True)
255 drivetrain_high_high = Drivetrain(
256 name="DrivetrainHighHigh", left_low=False, right_low=False)
257
258 kf_drivetrain_low_low = KFDrivetrain(
259 name="KFDrivetrainLowLow", left_low=True, right_low=True)
260 kf_drivetrain_low_high = KFDrivetrain(
261 name="KFDrivetrainLowHigh", left_low=True, right_low=False)
262 kf_drivetrain_high_low = KFDrivetrain(
263 name="KFDrivetrainHighLow", left_low=False, right_low=True)
264 kf_drivetrain_high_high = KFDrivetrain(
265 name="KFDrivetrainHighHigh", left_low=False, right_low=False)
266
267 if len(argv) != 5:
268 print "Expected .h file name and .cc file name"
269 else:
270 namespaces = ['y2012', 'control_loops', 'drivetrain']
271 dog_loop_writer = control_loop.ControlLoopWriter(
272 "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
273 drivetrain_high_low, drivetrain_high_high],
274 namespaces = namespaces)
275 dog_loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
276 drivetrain_low_low.dt))
277 dog_loop_writer.AddConstant(control_loop.Constant("kStallTorque", "%f",
278 drivetrain_low_low.stall_torque))
279 dog_loop_writer.AddConstant(control_loop.Constant("kStallCurrent", "%f",
280 drivetrain_low_low.stall_current))
281 dog_loop_writer.AddConstant(control_loop.Constant("kFreeSpeedRPM", "%f",
282 drivetrain_low_low.free_speed))
283 dog_loop_writer.AddConstant(control_loop.Constant("kFreeCurrent", "%f",
284 drivetrain_low_low.free_current))
285 dog_loop_writer.AddConstant(control_loop.Constant("kJ", "%f",
286 drivetrain_low_low.J))
287 dog_loop_writer.AddConstant(control_loop.Constant("kMass", "%f",
288 drivetrain_low_low.m))
289 dog_loop_writer.AddConstant(control_loop.Constant("kRobotRadius", "%f",
290 drivetrain_low_low.rb))
291 dog_loop_writer.AddConstant(control_loop.Constant("kWheelRadius", "%f",
292 drivetrain_low_low.r))
293 dog_loop_writer.AddConstant(control_loop.Constant("kR", "%f",
294 drivetrain_low_low.resistance))
295 dog_loop_writer.AddConstant(control_loop.Constant("kV", "%f",
296 drivetrain_low_low.Kv))
297 dog_loop_writer.AddConstant(control_loop.Constant("kT", "%f",
298 drivetrain_low_low.Kt))
299
300 dog_loop_writer.Write(argv[1], argv[2])
301
302 kf_loop_writer = control_loop.ControlLoopWriter(
303 "KFDrivetrain", [kf_drivetrain_low_low, kf_drivetrain_low_high,
304 kf_drivetrain_high_low, kf_drivetrain_high_high],
305 namespaces = namespaces)
306 kf_loop_writer.Write(argv[3], argv[4])
307
308if __name__ == '__main__':
309 sys.exit(main(sys.argv))