James Kuszmaul | 29c5952 | 2022-02-12 16:44:26 -0800 | [diff] [blame^] | 1 | #include "y2022/control_loops/localizer/localizer.h" |
| 2 | |
| 3 | #include "aos/events/simulated_event_loop.h" |
| 4 | #include "gtest/gtest.h" |
| 5 | #include "frc971/control_loops/drivetrain/drivetrain_test_lib.h" |
| 6 | |
| 7 | namespace frc971::controls::testing { |
| 8 | typedef ModelBasedLocalizer::ModelState ModelState; |
| 9 | typedef ModelBasedLocalizer::AccelState AccelState; |
| 10 | typedef ModelBasedLocalizer::ModelInput ModelInput; |
| 11 | typedef ModelBasedLocalizer::AccelInput AccelInput; |
| 12 | namespace { |
| 13 | constexpr size_t kX = ModelBasedLocalizer::kX; |
| 14 | constexpr size_t kY = ModelBasedLocalizer::kY; |
| 15 | constexpr size_t kTheta = ModelBasedLocalizer::kTheta; |
| 16 | constexpr size_t kVelocityX = ModelBasedLocalizer::kVelocityX; |
| 17 | constexpr size_t kVelocityY = ModelBasedLocalizer::kVelocityY; |
| 18 | constexpr size_t kAccelX = ModelBasedLocalizer::kAccelX; |
| 19 | constexpr size_t kAccelY = ModelBasedLocalizer::kAccelY; |
| 20 | constexpr size_t kThetaRate = ModelBasedLocalizer::kThetaRate; |
| 21 | constexpr size_t kLeftEncoder = ModelBasedLocalizer::kLeftEncoder; |
| 22 | constexpr size_t kLeftVelocity = ModelBasedLocalizer::kLeftVelocity; |
| 23 | constexpr size_t kLeftVoltageError = ModelBasedLocalizer::kLeftVoltageError; |
| 24 | constexpr size_t kRightEncoder = ModelBasedLocalizer::kRightEncoder; |
| 25 | constexpr size_t kRightVelocity = ModelBasedLocalizer::kRightVelocity; |
| 26 | constexpr size_t kRightVoltageError = ModelBasedLocalizer::kRightVoltageError; |
| 27 | constexpr size_t kLeftVoltage = ModelBasedLocalizer::kLeftVoltage; |
| 28 | constexpr size_t kRightVoltage = ModelBasedLocalizer::kRightVoltage; |
| 29 | } |
| 30 | |
| 31 | class LocalizerTest : public ::testing::Test { |
| 32 | protected: |
| 33 | LocalizerTest() |
| 34 | : dt_config_( |
| 35 | control_loops::drivetrain::testing::GetTestDrivetrainConfig()), |
| 36 | localizer_(dt_config_) {} |
| 37 | ModelState CallDiffModel(const ModelState &state, const ModelInput &U) { |
| 38 | return localizer_.DiffModel(state, U); |
| 39 | } |
| 40 | |
| 41 | AccelState CallDiffAccel(const AccelState &state, const AccelInput &U) { |
| 42 | return localizer_.DiffAccel(state, U); |
| 43 | } |
| 44 | |
| 45 | const control_loops::drivetrain::DrivetrainConfig<double> dt_config_; |
| 46 | ModelBasedLocalizer localizer_; |
| 47 | |
| 48 | }; |
| 49 | |
| 50 | TEST_F(LocalizerTest, AccelIntegrationTest) { |
| 51 | AccelState state; |
| 52 | state.setZero(); |
| 53 | AccelInput input; |
| 54 | input.setZero(); |
| 55 | |
| 56 | EXPECT_EQ(0.0, CallDiffAccel(state, input).norm()); |
| 57 | // Non-zero x/y/theta states should still result in a zero derivative. |
| 58 | state(kX) = 1.0; |
| 59 | state(kY) = 1.0; |
| 60 | state(kTheta) = 1.0; |
| 61 | EXPECT_EQ(0.0, CallDiffAccel(state, input).norm()); |
| 62 | |
| 63 | state.setZero(); |
| 64 | state(kVelocityX) = 1.0; |
| 65 | state(kVelocityY) = 2.0; |
| 66 | EXPECT_EQ((AccelState() << 1.0, 2.0, 0.0, 0.0, 0.0).finished(), |
| 67 | CallDiffAccel(state, input)); |
| 68 | // Derivatives should be independent of theta. |
| 69 | state(kTheta) = M_PI / 2.0; |
| 70 | EXPECT_EQ((AccelState() << 1.0, 2.0, 0.0, 0.0, 0.0).finished(), |
| 71 | CallDiffAccel(state, input)); |
| 72 | |
| 73 | state.setZero(); |
| 74 | input(kAccelX) = 1.0; |
| 75 | input(kAccelY) = 2.0; |
| 76 | input(kThetaRate) = 3.0; |
| 77 | EXPECT_EQ((AccelState() << 0.0, 0.0, 3.0, 1.0, 2.0).finished(), |
| 78 | CallDiffAccel(state, input)); |
| 79 | state(kTheta) = M_PI / 2.0; |
| 80 | EXPECT_EQ((AccelState() << 0.0, 0.0, 3.0, 1.0, 2.0).finished(), |
| 81 | CallDiffAccel(state, input)); |
| 82 | } |
| 83 | |
| 84 | TEST_F(LocalizerTest, ModelIntegrationTest) { |
| 85 | ModelState state; |
| 86 | state.setZero(); |
| 87 | ModelInput input; |
| 88 | input.setZero(); |
| 89 | ModelState diff; |
| 90 | |
| 91 | EXPECT_EQ(0.0, CallDiffModel(state, input).norm()); |
| 92 | // Non-zero x/y/theta/encoder states should still result in a zero derivative. |
| 93 | state(kX) = 1.0; |
| 94 | state(kY) = 1.0; |
| 95 | state(kTheta) = 1.0; |
| 96 | state(kLeftEncoder) = 1.0; |
| 97 | state(kRightEncoder) = 1.0; |
| 98 | EXPECT_EQ(0.0, CallDiffModel(state, input).norm()); |
| 99 | |
| 100 | state.setZero(); |
| 101 | state(kLeftVelocity) = 1.0; |
| 102 | state(kRightVelocity) = 1.0; |
| 103 | diff = CallDiffModel(state, input); |
| 104 | const ModelState mask_velocities = |
| 105 | (ModelState() << 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0).finished(); |
| 106 | EXPECT_EQ( |
| 107 | (ModelState() << 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0).finished(), |
| 108 | diff.cwiseProduct(mask_velocities)); |
| 109 | EXPECT_EQ(diff(kLeftVelocity), diff(kRightVelocity)); |
| 110 | EXPECT_GT(0.0, diff(kLeftVelocity)); |
| 111 | state(kTheta) = M_PI / 2.0; |
| 112 | diff = CallDiffModel(state, input); |
| 113 | EXPECT_NEAR(0.0, |
| 114 | ((ModelState() << 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0) |
| 115 | .finished() - |
| 116 | diff.cwiseProduct(mask_velocities)) |
| 117 | .norm(), |
| 118 | 1e-12); |
| 119 | EXPECT_EQ(diff(kLeftVelocity), diff(kRightVelocity)); |
| 120 | EXPECT_GT(0.0, diff(kLeftVelocity)); |
| 121 | |
| 122 | state.setZero(); |
| 123 | state(kLeftVelocity) = -1.0; |
| 124 | state(kRightVelocity) = 1.0; |
| 125 | diff = CallDiffModel(state, input); |
| 126 | EXPECT_EQ((ModelState() << 0.0, 0.0, 1.0 / dt_config_.robot_radius, -1.0, 0.0, |
| 127 | 0.0, 1.0, 0.0, 0.0) |
| 128 | .finished(), |
| 129 | diff.cwiseProduct(mask_velocities)); |
| 130 | EXPECT_EQ(-diff(kLeftVelocity), diff(kRightVelocity)); |
| 131 | EXPECT_LT(0.0, diff(kLeftVelocity)); |
| 132 | |
| 133 | state.setZero(); |
| 134 | input(kLeftVoltage) = 5.0; |
| 135 | input(kRightVoltage) = 6.0; |
| 136 | diff = CallDiffModel(state, input); |
| 137 | EXPECT_EQ(0, diff(kX)); |
| 138 | EXPECT_EQ(0, diff(kY)); |
| 139 | EXPECT_EQ(0, diff(kTheta)); |
| 140 | EXPECT_EQ(0, diff(kLeftEncoder)); |
| 141 | EXPECT_EQ(0, diff(kRightEncoder)); |
| 142 | EXPECT_EQ(0, diff(kLeftVoltageError)); |
| 143 | EXPECT_EQ(0, diff(kRightVoltageError)); |
| 144 | EXPECT_LT(0, diff(kLeftVelocity)); |
| 145 | EXPECT_LT(0, diff(kRightVelocity)); |
| 146 | EXPECT_LT(diff(kLeftVelocity), diff(kRightVelocity)); |
| 147 | |
| 148 | state.setZero(); |
| 149 | state(kLeftVoltageError) = -1.0; |
| 150 | state(kRightVoltageError) = -2.0; |
| 151 | input(kLeftVoltage) = 1.0; |
| 152 | input(kRightVoltage) = 2.0; |
| 153 | EXPECT_EQ(ModelState::Zero(), CallDiffModel(state, input)); |
| 154 | } |
| 155 | |
| 156 | // Test that the HandleReset does indeed reset the state of the localizer. |
| 157 | TEST_F(LocalizerTest, LocalizerReset) { |
| 158 | aos::monotonic_clock::time_point t = aos::monotonic_clock::epoch(); |
| 159 | localizer_.HandleReset(t, {1.0, 2.0, 3.0}); |
| 160 | EXPECT_EQ((Eigen::Vector3d{1.0, 2.0, 3.0}), localizer_.xytheta()); |
| 161 | localizer_.HandleReset(t, {4.0, 5.0, 6.0}); |
| 162 | EXPECT_EQ((Eigen::Vector3d{4.0, 5.0, 6.0}), localizer_.xytheta()); |
| 163 | } |
| 164 | |
| 165 | // Test that if we are moving only by accelerometer readings (and just assuming |
| 166 | // zero voltage/encoders) that we initially don't believe it but then latch into |
| 167 | // following the accelerometer. |
| 168 | // Note: this test is somewhat sensitive to the exact tuning values used for the |
| 169 | // filter. |
| 170 | TEST_F(LocalizerTest, AccelOnly) { |
| 171 | const aos::monotonic_clock::time_point start = aos::monotonic_clock::epoch(); |
| 172 | const std::chrono::microseconds kDt{500}; |
| 173 | aos::monotonic_clock::time_point t = start - std::chrono::milliseconds(1000); |
| 174 | Eigen::Vector3d gyro{0.0, 0.0, 0.0}; |
| 175 | const Eigen::Vector2d encoders{0.0, 0.0}; |
| 176 | const Eigen::Vector2d voltages{0.0, 0.0}; |
| 177 | Eigen::Vector3d accel{1.0, 0.2, 9.80665}; |
| 178 | Eigen::Vector3d accel_gs = accel / 9.80665; |
| 179 | while (t < start) { |
| 180 | // Spin to fill up the buffer. |
| 181 | localizer_.HandleImu(t, gyro, Eigen::Vector3d::UnitZ(), encoders, voltages); |
| 182 | t += kDt; |
| 183 | } |
| 184 | while (t < start + std::chrono::milliseconds(100)) { |
| 185 | localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages); |
| 186 | EXPECT_EQ(Eigen::Vector3d::Zero(), localizer_.xytheta()); |
| 187 | t += kDt; |
| 188 | } |
| 189 | while (t < start + std::chrono::milliseconds(500)) { |
| 190 | // Too lazy to hard-code when the transition happens. |
| 191 | localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages); |
| 192 | t += kDt; |
| 193 | } |
| 194 | while (t < start + std::chrono::milliseconds(1000)) { |
| 195 | SCOPED_TRACE(t); |
| 196 | localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages); |
| 197 | const Eigen::Vector3d xytheta = localizer_.xytheta(); |
| 198 | t += kDt; |
| 199 | EXPECT_NEAR( |
| 200 | 0.5 * accel(0) * std::pow(aos::time::DurationInSeconds(t - start), 2), |
| 201 | xytheta(0), 1e-4); |
| 202 | EXPECT_NEAR( |
| 203 | 0.5 * accel(1) * std::pow(aos::time::DurationInSeconds(t - start), 2), |
| 204 | xytheta(1), 1e-4); |
| 205 | EXPECT_EQ(0.0, xytheta(2)); |
| 206 | } |
| 207 | |
| 208 | ASSERT_NEAR(1.0, localizer_.accel_state()(kVelocityX), 1e-10); |
| 209 | ASSERT_NEAR(0.2, localizer_.accel_state()(kVelocityY), 1e-10); |
| 210 | |
| 211 | // Start going in a cirlce, and confirm that we |
| 212 | // handle things correctly. We rotate the accelerometer readings by 90 degrees |
| 213 | // and then leave them constant, which should make it look like we are going |
| 214 | // around in a circle. |
| 215 | accel = Eigen::Vector3d{-accel(1), accel(0), 9.80665}; |
| 216 | accel_gs = accel / 9.80665; |
| 217 | // v^2 / r = a |
| 218 | // w * r = v |
| 219 | // v^2 / v * w = a |
| 220 | // w = a / v |
| 221 | const double omega = accel.topRows<2>().norm() / |
| 222 | std::hypot(localizer_.accel_state()(kVelocityX), |
| 223 | localizer_.accel_state()(kVelocityY)); |
| 224 | gyro << 0.0, 0.0, omega; |
| 225 | // Due to the magic of math, omega works out to be 1.0 after having run at the |
| 226 | // acceleration for one second. |
| 227 | ASSERT_NEAR(1.0, omega, 1e-10); |
| 228 | // Yes, we could save some operations here, but let's be at least somewhat |
| 229 | // clear about what we're doing... |
| 230 | const double radius = accel.topRows<2>().norm() / (omega * omega); |
| 231 | const Eigen::Vector2d center = localizer_.xytheta().topRows<2>() + |
| 232 | accel.topRows<2>().normalized() * radius; |
| 233 | const double initial_theta = std::atan2(-accel(1), -accel(0)); |
| 234 | |
| 235 | std::chrono::microseconds one_revolution_time( |
| 236 | static_cast<int>(2 * M_PI / omega * 1e6)); |
| 237 | |
| 238 | aos::monotonic_clock::time_point circle_start = t; |
| 239 | |
| 240 | while (t < circle_start + one_revolution_time) { |
| 241 | SCOPED_TRACE(t); |
| 242 | localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages); |
| 243 | t += kDt; |
| 244 | const double t_circle = aos::time::DurationInSeconds(t - circle_start); |
| 245 | ASSERT_NEAR(t_circle * omega, localizer_.xytheta()(2), 1e-5); |
| 246 | const double theta_circle = t_circle * omega + initial_theta; |
| 247 | const Eigen::Vector2d offset = |
| 248 | radius * |
| 249 | Eigen::Vector2d{std::cos(theta_circle), std::sin(theta_circle)}; |
| 250 | const Eigen::Vector2d expected = center + offset; |
| 251 | const Eigen::Vector2d estimated = localizer_.xytheta().topRows<2>(); |
| 252 | const Eigen::Vector2d implied_offset = estimated - center; |
| 253 | const double implied_theta = |
| 254 | std::atan2(implied_offset.y(), implied_offset.x()); |
| 255 | VLOG(1) << "center: " << center.transpose() << " radius " << radius |
| 256 | << "\nlocalizer " << localizer_.xytheta().transpose() |
| 257 | << " t_circle " << t_circle << " omega " << omega << " theta " |
| 258 | << theta_circle << "\noffset " << offset.transpose() |
| 259 | << "\nexpected " << expected.transpose() << "\nimplied offset " |
| 260 | << implied_offset << " implied_theta " << implied_theta << "\nvel " |
| 261 | << localizer_.accel_state()(kVelocityX) << ", " |
| 262 | << localizer_.accel_state()(kVelocityY); |
| 263 | ASSERT_NEAR(0.0, (expected - localizer_.xytheta().topRows<2>()).norm(), |
| 264 | 1e-2); |
| 265 | } |
| 266 | |
| 267 | // Set accelerometer back to zero and confirm that we recover (the |
| 268 | // implementation decays the accelerometer speeds to zero when still, so |
| 269 | // should recover). |
| 270 | while (t < |
| 271 | circle_start + one_revolution_time + std::chrono::milliseconds(3000)) { |
| 272 | localizer_.HandleImu(t, Eigen::Vector3d::Zero(), Eigen::Vector3d::UnitZ(), |
| 273 | encoders, voltages); |
| 274 | t += kDt; |
| 275 | } |
| 276 | const Eigen::Vector3d final_pos = localizer_.xytheta(); |
| 277 | localizer_.HandleImu(t, Eigen::Vector3d::Zero(), Eigen::Vector3d::UnitZ(), |
| 278 | encoders, voltages); |
| 279 | ASSERT_NEAR(0.0, (final_pos - localizer_.xytheta()).norm(), 1e-10); |
| 280 | } |
| 281 | |
| 282 | using control_loops::drivetrain::Output; |
| 283 | |
| 284 | class EventLoopLocalizerTest : public ::testing::Test { |
| 285 | protected: |
| 286 | EventLoopLocalizerTest() |
| 287 | : configuration_(aos::configuration::ReadConfig("y2022/config.json")), |
| 288 | event_loop_factory_(&configuration_.message()), |
| 289 | roborio_node_( |
| 290 | aos::configuration::GetNode(&configuration_.message(), "roborio")), |
| 291 | imu_node_( |
| 292 | aos::configuration::GetNode(&configuration_.message(), "imu")), |
| 293 | dt_config_( |
| 294 | control_loops::drivetrain::testing::GetTestDrivetrainConfig()), |
| 295 | localizer_event_loop_( |
| 296 | event_loop_factory_.MakeEventLoop("localizer", imu_node_)), |
| 297 | localizer_(localizer_event_loop_.get(), dt_config_), |
| 298 | drivetrain_plant_event_loop_(event_loop_factory_.MakeEventLoop( |
| 299 | "drivetrain_plant", roborio_node_)), |
| 300 | drivetrain_plant_imu_event_loop_( |
| 301 | event_loop_factory_.MakeEventLoop("drivetrain_plant", imu_node_)), |
| 302 | drivetrain_plant_(drivetrain_plant_event_loop_.get(), |
| 303 | drivetrain_plant_imu_event_loop_.get(), dt_config_, |
| 304 | std::chrono::microseconds(500)), |
| 305 | roborio_test_event_loop_( |
| 306 | event_loop_factory_.MakeEventLoop("test", roborio_node_)), |
| 307 | imu_test_event_loop_( |
| 308 | event_loop_factory_.MakeEventLoop("test", imu_node_)), |
| 309 | logger_test_event_loop_( |
| 310 | event_loop_factory_.GetNodeEventLoopFactory("logger") |
| 311 | ->MakeEventLoop("test")), |
| 312 | output_sender_( |
| 313 | roborio_test_event_loop_->MakeSender<Output>("/drivetrain")), |
| 314 | output_fetcher_(roborio_test_event_loop_->MakeFetcher<LocalizerOutput>( |
| 315 | "/localizer")), |
| 316 | status_fetcher_( |
| 317 | imu_test_event_loop_->MakeFetcher<LocalizerStatus>("/localizer")) { |
| 318 | aos::TimerHandler *timer = roborio_test_event_loop_->AddTimer([this]() { |
| 319 | auto builder = output_sender_.MakeBuilder(); |
| 320 | auto output_builder = builder.MakeBuilder<Output>(); |
| 321 | output_builder.add_left_voltage(output_voltages_(0)); |
| 322 | output_builder.add_right_voltage(output_voltages_(1)); |
| 323 | builder.CheckOk(builder.Send(output_builder.Finish())); |
| 324 | }); |
| 325 | roborio_test_event_loop_->OnRun([timer, this]() { |
| 326 | timer->Setup(roborio_test_event_loop_->monotonic_now(), |
| 327 | std::chrono::milliseconds(5)); |
| 328 | }); |
| 329 | // Get things zeroed. |
| 330 | event_loop_factory_.RunFor(std::chrono::seconds(10)); |
| 331 | CHECK(status_fetcher_.Fetch()); |
| 332 | CHECK(status_fetcher_->zeroed()); |
| 333 | } |
| 334 | |
| 335 | aos::FlatbufferDetachedBuffer<aos::Configuration> configuration_; |
| 336 | aos::SimulatedEventLoopFactory event_loop_factory_; |
| 337 | const aos::Node *const roborio_node_; |
| 338 | const aos::Node *const imu_node_; |
| 339 | const control_loops::drivetrain::DrivetrainConfig<double> dt_config_; |
| 340 | std::unique_ptr<aos::EventLoop> localizer_event_loop_; |
| 341 | EventLoopLocalizer localizer_; |
| 342 | |
| 343 | std::unique_ptr<aos::EventLoop> drivetrain_plant_event_loop_; |
| 344 | std::unique_ptr<aos::EventLoop> drivetrain_plant_imu_event_loop_; |
| 345 | control_loops::drivetrain::testing::DrivetrainSimulation drivetrain_plant_; |
| 346 | |
| 347 | std::unique_ptr<aos::EventLoop> roborio_test_event_loop_; |
| 348 | std::unique_ptr<aos::EventLoop> imu_test_event_loop_; |
| 349 | std::unique_ptr<aos::EventLoop> logger_test_event_loop_; |
| 350 | |
| 351 | aos::Sender<Output> output_sender_; |
| 352 | aos::Fetcher<LocalizerOutput> output_fetcher_; |
| 353 | aos::Fetcher<LocalizerStatus> status_fetcher_; |
| 354 | |
| 355 | Eigen::Vector2d output_voltages_ = Eigen::Vector2d::Zero(); |
| 356 | }; |
| 357 | |
| 358 | TEST_F(EventLoopLocalizerTest, Nominal) { |
| 359 | output_voltages_ << 1.0, 1.0; |
| 360 | event_loop_factory_.RunFor(std::chrono::seconds(2)); |
| 361 | drivetrain_plant_.set_accel_sin_magnitude(0.01); |
| 362 | CHECK(output_fetcher_.Fetch()); |
| 363 | CHECK(status_fetcher_.Fetch()); |
| 364 | // The two can be different because they may've been sent at different times. |
| 365 | ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-6); |
| 366 | ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-6); |
| 367 | ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(), |
| 368 | 1e-6); |
| 369 | ASSERT_LT(0.1, output_fetcher_->x()); |
| 370 | ASSERT_NEAR(0.0, output_fetcher_->y(), 1e-10); |
| 371 | ASSERT_NEAR(0.0, output_fetcher_->theta(), 1e-10); |
| 372 | ASSERT_TRUE(status_fetcher_->has_model_based()); |
| 373 | ASSERT_TRUE(status_fetcher_->model_based()->using_model()); |
| 374 | ASSERT_LT(0.1, status_fetcher_->model_based()->accel_state()->velocity_x()); |
| 375 | ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_y(), |
| 376 | 1e-10); |
| 377 | ASSERT_NEAR( |
| 378 | 0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(), |
| 379 | 1e-1); |
| 380 | ASSERT_NEAR( |
| 381 | 0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(), |
| 382 | 1e-1); |
| 383 | } |
| 384 | |
| 385 | TEST_F(EventLoopLocalizerTest, Reverse) { |
| 386 | output_voltages_ << -4.0, -4.0; |
| 387 | drivetrain_plant_.set_accel_sin_magnitude(0.01); |
| 388 | event_loop_factory_.RunFor(std::chrono::seconds(2)); |
| 389 | CHECK(output_fetcher_.Fetch()); |
| 390 | CHECK(status_fetcher_.Fetch()); |
| 391 | // The two can be different because they may've been sent at different times. |
| 392 | ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-6); |
| 393 | ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-6); |
| 394 | ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(), |
| 395 | 1e-6); |
| 396 | ASSERT_GT(-0.1, output_fetcher_->x()); |
| 397 | ASSERT_NEAR(0.0, output_fetcher_->y(), 1e-10); |
| 398 | ASSERT_NEAR(0.0, output_fetcher_->theta(), 1e-10); |
| 399 | ASSERT_TRUE(status_fetcher_->has_model_based()); |
| 400 | ASSERT_TRUE(status_fetcher_->model_based()->using_model()); |
| 401 | ASSERT_GT(-0.1, status_fetcher_->model_based()->accel_state()->velocity_x()); |
| 402 | ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_y(), |
| 403 | 1e-10); |
| 404 | ASSERT_NEAR( |
| 405 | 0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(), |
| 406 | 1e-1); |
| 407 | ASSERT_NEAR( |
| 408 | 0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(), |
| 409 | 1e-1); |
| 410 | } |
| 411 | |
| 412 | TEST_F(EventLoopLocalizerTest, SpinInPlace) { |
| 413 | output_voltages_ << 4.0, -4.0; |
| 414 | event_loop_factory_.RunFor(std::chrono::seconds(2)); |
| 415 | CHECK(output_fetcher_.Fetch()); |
| 416 | CHECK(status_fetcher_.Fetch()); |
| 417 | // The two can be different because they may've been sent at different times. |
| 418 | ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-6); |
| 419 | ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-6); |
| 420 | ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(), |
| 421 | 1e-1); |
| 422 | ASSERT_NEAR(0.0, output_fetcher_->x(), 1e-10); |
| 423 | ASSERT_NEAR(0.0, output_fetcher_->y(), 1e-10); |
| 424 | ASSERT_LT(0.1, std::abs(output_fetcher_->theta())); |
| 425 | ASSERT_TRUE(status_fetcher_->has_model_based()); |
| 426 | ASSERT_TRUE(status_fetcher_->model_based()->using_model()); |
| 427 | ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_x(), |
| 428 | 1e-10); |
| 429 | ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_y(), |
| 430 | 1e-10); |
| 431 | ASSERT_NEAR(-status_fetcher_->model_based()->model_state()->left_velocity(), |
| 432 | status_fetcher_->model_based()->model_state()->right_velocity(), |
| 433 | 1e-3); |
| 434 | ASSERT_NEAR( |
| 435 | 0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(), |
| 436 | 1e-1); |
| 437 | ASSERT_NEAR( |
| 438 | 0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(), |
| 439 | 1e-1); |
| 440 | ASSERT_NEAR(0.0, status_fetcher_->model_based()->residual(), 1e-3); |
| 441 | } |
| 442 | |
| 443 | TEST_F(EventLoopLocalizerTest, Curve) { |
| 444 | output_voltages_ << 2.0, 4.0; |
| 445 | event_loop_factory_.RunFor(std::chrono::seconds(2)); |
| 446 | CHECK(output_fetcher_.Fetch()); |
| 447 | CHECK(status_fetcher_.Fetch()); |
| 448 | // The two can be different because they may've been sent at different times. |
| 449 | ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-2); |
| 450 | ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-2); |
| 451 | ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(), |
| 452 | 1e-1); |
| 453 | ASSERT_LT(0.1, output_fetcher_->x()); |
| 454 | ASSERT_LT(0.1, output_fetcher_->y()); |
| 455 | ASSERT_LT(0.1, std::abs(output_fetcher_->theta())); |
| 456 | ASSERT_TRUE(status_fetcher_->has_model_based()); |
| 457 | ASSERT_TRUE(status_fetcher_->model_based()->using_model()); |
| 458 | ASSERT_LT(0.0, status_fetcher_->model_based()->accel_state()->velocity_x()); |
| 459 | ASSERT_LT(0.0, status_fetcher_->model_based()->accel_state()->velocity_y()); |
| 460 | ASSERT_NEAR( |
| 461 | 0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(), |
| 462 | 1e-1); |
| 463 | ASSERT_NEAR( |
| 464 | 0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(), |
| 465 | 1e-1); |
| 466 | ASSERT_NEAR(0.0, status_fetcher_->model_based()->residual(), 1e-1) |
| 467 | << aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true}); |
| 468 | } |
| 469 | |
| 470 | // Tests that small amounts of voltage error are handled by the model-based |
| 471 | // half of the localizer. |
| 472 | TEST_F(EventLoopLocalizerTest, VoltageError) { |
| 473 | output_voltages_ << 0.0, 0.0; |
| 474 | drivetrain_plant_.set_left_voltage_offset(2.0); |
| 475 | drivetrain_plant_.set_right_voltage_offset(2.0); |
| 476 | drivetrain_plant_.set_accel_sin_magnitude(0.01); |
| 477 | |
| 478 | event_loop_factory_.RunFor(std::chrono::seconds(2)); |
| 479 | CHECK(output_fetcher_.Fetch()); |
| 480 | CHECK(status_fetcher_.Fetch()); |
| 481 | // Should still be using the model, but have a non-trivial residual. |
| 482 | ASSERT_TRUE(status_fetcher_->model_based()->using_model()); |
| 483 | ASSERT_LT(0.1, status_fetcher_->model_based()->residual()) |
| 484 | << aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true}); |
| 485 | |
| 486 | // Afer running for a while, voltage error terms should converge and result in |
| 487 | // low residuals. |
| 488 | event_loop_factory_.RunFor(std::chrono::seconds(10)); |
| 489 | CHECK(output_fetcher_.Fetch()); |
| 490 | CHECK(status_fetcher_.Fetch()); |
| 491 | ASSERT_TRUE(status_fetcher_->model_based()->using_model()); |
| 492 | ASSERT_NEAR( |
| 493 | 2.0, status_fetcher_->model_based()->model_state()->left_voltage_error(), |
| 494 | 0.1) |
| 495 | << aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true}); |
| 496 | ASSERT_NEAR( |
| 497 | 2.0, status_fetcher_->model_based()->model_state()->right_voltage_error(), |
| 498 | 0.1) |
| 499 | << aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true}); |
| 500 | ASSERT_GT(0.01, status_fetcher_->model_based()->residual()) |
| 501 | << aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true}); |
| 502 | } |
| 503 | |
| 504 | // Tests that large amounts of voltage error force us into the |
| 505 | // acceleration-based localizer. |
| 506 | TEST_F(EventLoopLocalizerTest, HighVoltageError) { |
| 507 | output_voltages_ << 0.0, 0.0; |
| 508 | drivetrain_plant_.set_left_voltage_offset(200.0); |
| 509 | drivetrain_plant_.set_right_voltage_offset(200.0); |
| 510 | drivetrain_plant_.set_accel_sin_magnitude(0.01); |
| 511 | |
| 512 | event_loop_factory_.RunFor(std::chrono::seconds(2)); |
| 513 | CHECK(output_fetcher_.Fetch()); |
| 514 | CHECK(status_fetcher_.Fetch()); |
| 515 | // Should still be using the model, but have a non-trivial residual. |
| 516 | ASSERT_FALSE(status_fetcher_->model_based()->using_model()); |
| 517 | ASSERT_LT(0.1, status_fetcher_->model_based()->residual()) |
| 518 | << aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true}); |
| 519 | ASSERT_NEAR(drivetrain_plant_.state()(0), |
| 520 | status_fetcher_->model_based()->x(), 1.0); |
| 521 | ASSERT_NEAR(drivetrain_plant_.state()(1), |
| 522 | status_fetcher_->model_based()->y(), 1e-6); |
| 523 | } |
| 524 | |
| 525 | } // namespace frc91::controls::testing |