Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame^] | 1 | /*----------------------------------------------------------------------------*/ |
| 2 | /* Copyright (c) FIRST 2014. All Rights Reserved. */ |
| 3 | /* Open Source Software - may be modified and shared by FRC teams. The code */ |
| 4 | /* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ |
| 5 | /*----------------------------------------------------------------------------*/ |
| 6 | |
| 7 | #include "CANTalon.h" |
| 8 | #include "WPIErrors.h" |
| 9 | #include <unistd.h> // usleep |
| 10 | #include <sstream> |
| 11 | /** |
| 12 | * Number of adc engineering units per 0 to 3.3V sweep. |
| 13 | * This is necessary for scaling Analog Position in rotations/RPM. |
| 14 | */ |
| 15 | const double kNativeAdcUnitsPerRotation = 1024.0; |
| 16 | /** |
| 17 | * Number of pulse width engineering units per full rotation. |
| 18 | * This is necessary for scaling Pulse Width Decoded Position in rotations/RPM. |
| 19 | */ |
| 20 | const double kNativePwdUnitsPerRotation = 4096.0; |
| 21 | /** |
| 22 | * Number of minutes per 100ms unit. Useful for scaling velocities |
| 23 | * measured by Talon's 100ms timebase to rotations per minute. |
| 24 | */ |
| 25 | const double kMinutesPer100msUnit = 1.0/600.0; |
| 26 | |
| 27 | /** |
| 28 | * Constructor for the CANTalon device. |
| 29 | * @param deviceNumber The CAN ID of the Talon SRX |
| 30 | */ |
| 31 | CANTalon::CANTalon(int deviceNumber) |
| 32 | : m_deviceNumber(deviceNumber), |
| 33 | m_impl(new CanTalonSRX(deviceNumber)), |
| 34 | m_safetyHelper(new MotorSafetyHelper(this)) { |
| 35 | ApplyControlMode(m_controlMode); |
| 36 | m_impl->SetProfileSlotSelect(m_profile); |
| 37 | m_isInverted = false; |
| 38 | } |
| 39 | /** |
| 40 | * Constructor for the CANTalon device. |
| 41 | * @param deviceNumber The CAN ID of the Talon SRX |
| 42 | * @param controlPeriodMs The period in ms to send the CAN control frame. |
| 43 | * Period is bounded to [1ms,95ms]. |
| 44 | */ |
| 45 | CANTalon::CANTalon(int deviceNumber, int controlPeriodMs) |
| 46 | : m_deviceNumber(deviceNumber), |
| 47 | m_impl(new CanTalonSRX(deviceNumber,controlPeriodMs)), |
| 48 | m_safetyHelper(new MotorSafetyHelper(this)) { |
| 49 | ApplyControlMode(m_controlMode); |
| 50 | m_impl->SetProfileSlotSelect(m_profile); |
| 51 | } |
| 52 | |
| 53 | CANTalon::~CANTalon() { |
| 54 | if (m_table != nullptr) m_table->RemoveTableListener(this); |
| 55 | if (m_hasBeenMoved) return; |
| 56 | Disable(); |
| 57 | } |
| 58 | |
| 59 | /** |
| 60 | * Write out the PID value as seen in the PIDOutput base object. |
| 61 | * |
| 62 | * @deprecated Call Set instead. |
| 63 | * |
| 64 | * @param output Write out the PercentVbus value as was computed by the |
| 65 | * PIDController |
| 66 | */ |
| 67 | void CANTalon::PIDWrite(float output) { |
| 68 | if (GetControlMode() == kPercentVbus) { |
| 69 | Set(output); |
| 70 | } else { |
| 71 | wpi_setWPIErrorWithContext(IncompatibleMode, |
| 72 | "PID only supported in PercentVbus mode"); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | /** |
| 77 | * Retrieve the current sensor value. Equivalent to Get(). |
| 78 | * |
| 79 | * @return The current sensor value of the Talon. |
| 80 | */ |
| 81 | double CANTalon::PIDGet() { return Get(); } |
| 82 | |
| 83 | /** |
| 84 | * Gets the current status of the Talon (usually a sensor value). |
| 85 | * |
| 86 | * In Current mode: returns output current. |
| 87 | * In Speed mode: returns current speed. |
| 88 | * In Position mode: returns current sensor position. |
| 89 | * In PercentVbus and Follower modes: returns current applied throttle. |
| 90 | * |
| 91 | * @return The current sensor value of the Talon. |
| 92 | */ |
| 93 | float CANTalon::Get() const { |
| 94 | int value; |
| 95 | switch (m_controlMode) { |
| 96 | case kVoltage: |
| 97 | return GetOutputVoltage(); |
| 98 | case kCurrent: |
| 99 | return GetOutputCurrent(); |
| 100 | case kSpeed: |
| 101 | m_impl->GetSensorVelocity(value); |
| 102 | return ScaleNativeUnitsToRpm(m_feedbackDevice, value); |
| 103 | case kPosition: |
| 104 | m_impl->GetSensorPosition(value); |
| 105 | return ScaleNativeUnitsToRotations(m_feedbackDevice, value); |
| 106 | case kPercentVbus: |
| 107 | case kFollower: |
| 108 | default: |
| 109 | m_impl->GetAppliedThrottle(value); |
| 110 | return (float)value / 1023.0; |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | /** |
| 115 | * Sets the appropriate output on the talon, depending on the mode. |
| 116 | * |
| 117 | * In PercentVbus, the output is between -1.0 and 1.0, with 0.0 as stopped. |
| 118 | * In Voltage mode, output value is in volts. |
| 119 | * In Current mode, output value is in amperes. |
| 120 | * In Speed mode, output value is in position change / 10ms. |
| 121 | * In Position mode, output value is in encoder ticks or an analog value, |
| 122 | * depending on the sensor. |
| 123 | * In Follower mode, the output value is the integer device ID of the talon to |
| 124 | * duplicate. |
| 125 | * |
| 126 | * @param outputValue The setpoint value, as described above. |
| 127 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 128 | */ |
| 129 | void CANTalon::Set(float value, uint8_t syncGroup) { |
| 130 | /* feed safety helper since caller just updated our output */ |
| 131 | m_safetyHelper->Feed(); |
| 132 | if (m_controlEnabled) { |
| 133 | m_setPoint = value; /* cache set point for GetSetpoint() */ |
| 134 | CTR_Code status = CTR_OKAY; |
| 135 | switch (m_controlMode) { |
| 136 | case CANSpeedController::kPercentVbus: { |
| 137 | m_impl->Set(m_isInverted ? -value : value); |
| 138 | status = CTR_OKAY; |
| 139 | } break; |
| 140 | case CANSpeedController::kFollower: { |
| 141 | status = m_impl->SetDemand((int)value); |
| 142 | } break; |
| 143 | case CANSpeedController::kVoltage: { |
| 144 | // Voltage is an 8.8 fixed point number. |
| 145 | int volts = int((m_isInverted ? -value : value) * 256); |
| 146 | status = m_impl->SetDemand(volts); |
| 147 | } break; |
| 148 | case CANSpeedController::kSpeed: |
| 149 | /* if the caller has provided scaling info, apply it */ |
| 150 | status = m_impl->SetDemand(ScaleVelocityToNativeUnits(m_feedbackDevice, m_isInverted ? -value : value)); |
| 151 | break; |
| 152 | case CANSpeedController::kPosition: |
| 153 | status = m_impl->SetDemand(ScaleRotationsToNativeUnits(m_feedbackDevice, value)); |
| 154 | break; |
| 155 | case CANSpeedController::kCurrent: { |
| 156 | double milliamperes = (m_isInverted ? -value : value) * 1000.0; /* mA*/ |
| 157 | status = m_impl->SetDemand(milliamperes); |
| 158 | } break; |
| 159 | default: |
| 160 | wpi_setWPIErrorWithContext( |
| 161 | IncompatibleMode, |
| 162 | "The CAN Talon does not support this control mode."); |
| 163 | break; |
| 164 | } |
| 165 | if (status != CTR_OKAY) { |
| 166 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 167 | } |
| 168 | |
| 169 | status = m_impl->SetModeSelect(m_sendMode); |
| 170 | |
| 171 | if (status != CTR_OKAY) { |
| 172 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | /** |
| 178 | * Sets the setpoint to value. Equivalent to Set(). |
| 179 | */ |
| 180 | void CANTalon::SetSetpoint(float value) { Set(value); } |
| 181 | |
| 182 | /** |
| 183 | * Resets the integral term and disables the controller. |
| 184 | */ |
| 185 | void CANTalon::Reset() { |
| 186 | ClearIaccum(); |
| 187 | Disable(); |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * Disables control of the talon, causing the motor to brake or coast |
| 192 | * depending on its mode (see the Talon SRX Software Reference manual |
| 193 | * for more information). |
| 194 | */ |
| 195 | void CANTalon::Disable() { |
| 196 | m_impl->SetModeSelect((int)CANTalon::kDisabled); |
| 197 | m_controlEnabled = false; |
| 198 | } |
| 199 | |
| 200 | /** |
| 201 | * Enables control of the Talon, allowing the motor to move. |
| 202 | */ |
| 203 | void CANTalon::EnableControl() { |
| 204 | SetControlMode(m_controlMode); |
| 205 | m_controlEnabled = true; |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * Enables control of the Talon, allowing the motor to move. |
| 210 | */ |
| 211 | void CANTalon::Enable() { EnableControl(); } |
| 212 | |
| 213 | /** |
| 214 | * @return Whether the Talon is currently enabled. |
| 215 | */ |
| 216 | bool CANTalon::IsControlEnabled() const { return m_controlEnabled; } |
| 217 | |
| 218 | /** |
| 219 | * @return Whether the Talon is currently enabled. |
| 220 | */ |
| 221 | bool CANTalon::IsEnabled() const { return IsControlEnabled(); } |
| 222 | |
| 223 | /** |
| 224 | * @param p Proportional constant to use in PID loop. |
| 225 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 226 | */ |
| 227 | void CANTalon::SetP(double p) { |
| 228 | CTR_Code status = m_impl->SetPgain(m_profile, p); |
| 229 | if (status != CTR_OKAY) { |
| 230 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | /** |
| 235 | * Set the integration constant of the currently selected profile. |
| 236 | * |
| 237 | * @param i Integration constant for the currently selected PID profile. |
| 238 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 239 | */ |
| 240 | void CANTalon::SetI(double i) { |
| 241 | CTR_Code status = m_impl->SetIgain(m_profile, i); |
| 242 | if (status != CTR_OKAY) { |
| 243 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | /** |
| 248 | * Set the derivative constant of the currently selected profile. |
| 249 | * |
| 250 | * @param d Derivative constant for the currently selected PID profile. |
| 251 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 252 | */ |
| 253 | void CANTalon::SetD(double d) { |
| 254 | CTR_Code status = m_impl->SetDgain(m_profile, d); |
| 255 | if (status != CTR_OKAY) { |
| 256 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 257 | } |
| 258 | } |
| 259 | /** |
| 260 | * Set the feedforward value of the currently selected profile. |
| 261 | * |
| 262 | * @param f Feedforward constant for the currently selected PID profile. |
| 263 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 264 | */ |
| 265 | void CANTalon::SetF(double f) { |
| 266 | CTR_Code status = m_impl->SetFgain(m_profile, f); |
| 267 | if (status != CTR_OKAY) { |
| 268 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 269 | } |
| 270 | } |
| 271 | /** |
| 272 | * Set the Izone to a nonzero value to auto clear the integral accumulator |
| 273 | * when the absolute value of CloseLoopError exceeds Izone. |
| 274 | * |
| 275 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 276 | */ |
| 277 | void CANTalon::SetIzone(unsigned iz) { |
| 278 | CTR_Code status = m_impl->SetIzone(m_profile, iz); |
| 279 | if (status != CTR_OKAY) { |
| 280 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 281 | } |
| 282 | } |
| 283 | /** |
| 284 | * SRX has two available slots for PID. |
| 285 | * @param slotIdx one or zero depending on which slot caller wants. |
| 286 | */ |
| 287 | void CANTalon::SelectProfileSlot(int slotIdx) { |
| 288 | m_profile = (slotIdx == 0) ? 0 : 1; /* only get two slots for now */ |
| 289 | CTR_Code status = m_impl->SetProfileSlotSelect(m_profile); |
| 290 | if (status != CTR_OKAY) { |
| 291 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 292 | } |
| 293 | } |
| 294 | /** |
| 295 | * Sets control values for closed loop control. |
| 296 | * |
| 297 | * @param p Proportional constant. |
| 298 | * @param i Integration constant. |
| 299 | * @param d Differential constant. |
| 300 | * This function does not modify F-gain. Considerable passing a zero for f |
| 301 | * using |
| 302 | * the four-parameter function. |
| 303 | */ |
| 304 | void CANTalon::SetPID(double p, double i, double d) { |
| 305 | SetP(p); |
| 306 | SetI(i); |
| 307 | SetD(d); |
| 308 | } |
| 309 | /** |
| 310 | * Sets control values for closed loop control. |
| 311 | * |
| 312 | * @param p Proportional constant. |
| 313 | * @param i Integration constant. |
| 314 | * @param d Differential constant. |
| 315 | * @param f Feedforward constant. |
| 316 | */ |
| 317 | void CANTalon::SetPID(double p, double i, double d, double f) { |
| 318 | SetP(p); |
| 319 | SetI(i); |
| 320 | SetD(d); |
| 321 | SetF(f); |
| 322 | } |
| 323 | /** |
| 324 | * Select the feedback device to use in closed-loop |
| 325 | */ |
| 326 | void CANTalon::SetFeedbackDevice(FeedbackDevice feedbackDevice) { |
| 327 | /* save the selection so that future setters/getters know which scalars to apply */ |
| 328 | m_feedbackDevice = feedbackDevice; |
| 329 | /* pass feedback to actual CAN frame */ |
| 330 | CTR_Code status = m_impl->SetFeedbackDeviceSelect((int)feedbackDevice); |
| 331 | if (status != CTR_OKAY) { |
| 332 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 333 | } |
| 334 | } |
| 335 | /** |
| 336 | * Select the feedback device to use in closed-loop |
| 337 | */ |
| 338 | void CANTalon::SetStatusFrameRateMs(StatusFrameRate stateFrame, int periodMs) { |
| 339 | CTR_Code status = m_impl->SetStatusFrameRate((int)stateFrame, periodMs); |
| 340 | if (status != CTR_OKAY) { |
| 341 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | /** |
| 346 | * Get the current proportional constant. |
| 347 | * |
| 348 | * @return double proportional constant for current profile. |
| 349 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 350 | */ |
| 351 | double CANTalon::GetP() const { |
| 352 | CanTalonSRX::param_t param = m_profile ? CanTalonSRX::eProfileParamSlot1_P |
| 353 | : CanTalonSRX::eProfileParamSlot0_P; |
| 354 | // Update the info in m_impl. |
| 355 | CTR_Code status = m_impl->RequestParam(param); |
| 356 | if (status != CTR_OKAY) { |
| 357 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 358 | } |
| 359 | usleep(kDelayForSolicitedSignalsUs); /* small yield for getting response */ |
| 360 | double p; |
| 361 | status = m_impl->GetPgain(m_profile, p); |
| 362 | if (status != CTR_OKAY) { |
| 363 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 364 | } |
| 365 | return p; |
| 366 | } |
| 367 | |
| 368 | /** |
| 369 | * TODO documentation (see CANJaguar.cpp) |
| 370 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 371 | */ |
| 372 | double CANTalon::GetI() const { |
| 373 | CanTalonSRX::param_t param = m_profile ? CanTalonSRX::eProfileParamSlot1_I |
| 374 | : CanTalonSRX::eProfileParamSlot0_I; |
| 375 | // Update the info in m_impl. |
| 376 | CTR_Code status = m_impl->RequestParam(param); |
| 377 | if (status != CTR_OKAY) { |
| 378 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 379 | } |
| 380 | usleep(kDelayForSolicitedSignalsUs); /* small yield for getting response */ |
| 381 | |
| 382 | double i; |
| 383 | status = m_impl->GetIgain(m_profile, i); |
| 384 | if (status != CTR_OKAY) { |
| 385 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 386 | } |
| 387 | return i; |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * TODO documentation (see CANJaguar.cpp) |
| 392 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 393 | */ |
| 394 | double CANTalon::GetD() const { |
| 395 | CanTalonSRX::param_t param = m_profile ? CanTalonSRX::eProfileParamSlot1_D |
| 396 | : CanTalonSRX::eProfileParamSlot0_D; |
| 397 | // Update the info in m_impl. |
| 398 | CTR_Code status = m_impl->RequestParam(param); |
| 399 | if (status != CTR_OKAY) { |
| 400 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 401 | } |
| 402 | usleep(kDelayForSolicitedSignalsUs); /* small yield for getting response */ |
| 403 | |
| 404 | double d; |
| 405 | status = m_impl->GetDgain(m_profile, d); |
| 406 | if (status != CTR_OKAY) { |
| 407 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 408 | } |
| 409 | return d; |
| 410 | } |
| 411 | /** |
| 412 | * |
| 413 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 414 | */ |
| 415 | double CANTalon::GetF() const { |
| 416 | CanTalonSRX::param_t param = m_profile ? CanTalonSRX::eProfileParamSlot1_F |
| 417 | : CanTalonSRX::eProfileParamSlot0_F; |
| 418 | // Update the info in m_impl. |
| 419 | CTR_Code status = m_impl->RequestParam(param); |
| 420 | if (status != CTR_OKAY) { |
| 421 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 422 | } |
| 423 | |
| 424 | usleep(kDelayForSolicitedSignalsUs); /* small yield for getting response */ |
| 425 | double f; |
| 426 | status = m_impl->GetFgain(m_profile, f); |
| 427 | if (status != CTR_OKAY) { |
| 428 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 429 | } |
| 430 | return f; |
| 431 | } |
| 432 | /** |
| 433 | * @see SelectProfileSlot to choose between the two sets of gains. |
| 434 | */ |
| 435 | int CANTalon::GetIzone() const { |
| 436 | CanTalonSRX::param_t param = m_profile |
| 437 | ? CanTalonSRX::eProfileParamSlot1_IZone |
| 438 | : CanTalonSRX::eProfileParamSlot0_IZone; |
| 439 | // Update the info in m_impl. |
| 440 | CTR_Code status = m_impl->RequestParam(param); |
| 441 | if (status != CTR_OKAY) { |
| 442 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 443 | } |
| 444 | usleep(kDelayForSolicitedSignalsUs); |
| 445 | |
| 446 | int iz; |
| 447 | status = m_impl->GetIzone(m_profile, iz); |
| 448 | if (status != CTR_OKAY) { |
| 449 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 450 | } |
| 451 | return iz; |
| 452 | } |
| 453 | |
| 454 | /** |
| 455 | * @return the current setpoint; ie, whatever was last passed to Set(). |
| 456 | */ |
| 457 | double CANTalon::GetSetpoint() const { return m_setPoint; } |
| 458 | |
| 459 | /** |
| 460 | * Returns the voltage coming in from the battery. |
| 461 | * |
| 462 | * @return The input voltage in volts. |
| 463 | */ |
| 464 | float CANTalon::GetBusVoltage() const { |
| 465 | double voltage; |
| 466 | CTR_Code status = m_impl->GetBatteryV(voltage); |
| 467 | if (status != CTR_OKAY) { |
| 468 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 469 | } |
| 470 | return voltage; |
| 471 | } |
| 472 | |
| 473 | /** |
| 474 | * @return The voltage being output by the Talon, in Volts. |
| 475 | */ |
| 476 | float CANTalon::GetOutputVoltage() const { |
| 477 | int throttle11; |
| 478 | CTR_Code status = m_impl->GetAppliedThrottle(throttle11); |
| 479 | float voltage = GetBusVoltage() * (float(throttle11) / 1023.0); |
| 480 | if (status != CTR_OKAY) { |
| 481 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 482 | } |
| 483 | return voltage; |
| 484 | } |
| 485 | |
| 486 | /** |
| 487 | * Returns the current going through the Talon, in Amperes. |
| 488 | */ |
| 489 | float CANTalon::GetOutputCurrent() const { |
| 490 | double current; |
| 491 | |
| 492 | CTR_Code status = m_impl->GetCurrent(current); |
| 493 | if (status != CTR_OKAY) { |
| 494 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 495 | } |
| 496 | |
| 497 | return current; |
| 498 | } |
| 499 | |
| 500 | /** |
| 501 | * Returns temperature of Talon, in degrees Celsius. |
| 502 | */ |
| 503 | float CANTalon::GetTemperature() const { |
| 504 | double temp; |
| 505 | |
| 506 | CTR_Code status = m_impl->GetTemp(temp); |
| 507 | if (temp != CTR_OKAY) { |
| 508 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 509 | } |
| 510 | return temp; |
| 511 | } |
| 512 | /** |
| 513 | * Set the position value of the selected sensor. This is useful for zero-ing |
| 514 | * quadrature encoders. |
| 515 | * Continuous sensors (like analog encoderes) can also partially be set (the |
| 516 | * portion of the postion based on overflows). |
| 517 | */ |
| 518 | void CANTalon::SetPosition(double pos) { |
| 519 | int32_t nativePos = ScaleRotationsToNativeUnits(m_feedbackDevice, pos); |
| 520 | CTR_Code status = m_impl->SetSensorPosition(nativePos); |
| 521 | if (status != CTR_OKAY) { |
| 522 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 523 | } |
| 524 | } |
| 525 | /** |
| 526 | * TODO documentation (see CANJaguar.cpp) |
| 527 | * |
| 528 | * @return The position of the sensor currently providing feedback. |
| 529 | * When using analog sensors, 0 units corresponds to 0V, 1023 |
| 530 | * units corresponds to 3.3V |
| 531 | * When using an analog encoder (wrapping around 1023 => 0 is |
| 532 | * possible) the units are still 3.3V per 1023 units. |
| 533 | * When using quadrature, each unit is a quadrature edge (4X) |
| 534 | * mode. |
| 535 | */ |
| 536 | double CANTalon::GetPosition() const { |
| 537 | int32_t position; |
| 538 | CTR_Code status = m_impl->GetSensorPosition(position); |
| 539 | if (status != CTR_OKAY) { |
| 540 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 541 | } |
| 542 | return ScaleNativeUnitsToRotations(m_feedbackDevice, position); |
| 543 | } |
| 544 | /** |
| 545 | * If sensor and motor are out of phase, sensor can be inverted |
| 546 | * (position and velocity multiplied by -1). |
| 547 | * @see GetPosition and @see GetSpeed. |
| 548 | */ |
| 549 | void CANTalon::SetSensorDirection(bool reverseSensor) { |
| 550 | CTR_Code status = m_impl->SetRevFeedbackSensor(reverseSensor ? 1 : 0); |
| 551 | if (status != CTR_OKAY) { |
| 552 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 553 | } |
| 554 | } |
| 555 | /** |
| 556 | * Flips the sign (multiplies by negative one) the throttle values going into |
| 557 | * the motor on the talon in closed loop modes. Typically the application |
| 558 | * should use SetSensorDirection to keep sensor and motor in phase. |
| 559 | * @see SetSensorDirection |
| 560 | * However this routine is helpful for reversing the motor direction |
| 561 | * when Talon is in slave mode, or when using a single-direction position |
| 562 | * sensor in a closed-loop mode. |
| 563 | * |
| 564 | * @param reverseOutput True if motor output should be flipped; False if not. |
| 565 | */ |
| 566 | void CANTalon::SetClosedLoopOutputDirection(bool reverseOutput) { |
| 567 | CTR_Code status = m_impl->SetRevMotDuringCloseLoopEn(reverseOutput ? 1 : 0); |
| 568 | if (status != CTR_OKAY) { |
| 569 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 570 | } |
| 571 | } |
| 572 | /** |
| 573 | * Returns the current error in the controller. |
| 574 | * |
| 575 | * @return the difference between the setpoint and the sensor value. |
| 576 | */ |
| 577 | int CANTalon::GetClosedLoopError() const { |
| 578 | int error; |
| 579 | /* retrieve the closed loop error in native units */ |
| 580 | CTR_Code status = m_impl->GetCloseLoopErr(error); |
| 581 | if (status != CTR_OKAY) { |
| 582 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 583 | } |
| 584 | return error; |
| 585 | } |
| 586 | /** |
| 587 | * Set the allowable closed loop error. |
| 588 | * @param allowableCloseLoopError allowable closed loop error for selected profile. |
| 589 | * mA for Curent closed loop. |
| 590 | * Talon Native Units for position and velocity. |
| 591 | */ |
| 592 | void CANTalon::SetAllowableClosedLoopErr(uint32_t allowableCloseLoopError) |
| 593 | { |
| 594 | /* grab param enum */ |
| 595 | CanTalonSRX::param_t param; |
| 596 | if (m_profile == 1) { |
| 597 | param = CanTalonSRX::eProfileParamSlot1_AllowableClosedLoopErr; |
| 598 | } else { |
| 599 | param = CanTalonSRX::eProfileParamSlot0_AllowableClosedLoopErr; |
| 600 | } |
| 601 | /* send allowable close loop er in native units */ |
| 602 | ConfigSetParameter(param, allowableCloseLoopError); |
| 603 | } |
| 604 | |
| 605 | /** |
| 606 | * TODO documentation (see CANJaguar.cpp) |
| 607 | * |
| 608 | * @returns The speed of the sensor currently providing feedback. |
| 609 | * |
| 610 | * The speed units will be in the sensor's native ticks per 100ms. |
| 611 | * |
| 612 | * For analog sensors, 3.3V corresponds to 1023 units. |
| 613 | * So a speed of 200 equates to ~0.645 dV per 100ms or 6.451 dV per |
| 614 | * second. |
| 615 | * If this is an analog encoder, that likely means 1.9548 rotations |
| 616 | * per sec. |
| 617 | * For quadrature encoders, each unit corresponds a quadrature edge (4X). |
| 618 | * So a 250 count encoder will produce 1000 edge events per |
| 619 | * rotation. |
| 620 | * An example speed of 200 would then equate to 20% of a rotation |
| 621 | * per 100ms, |
| 622 | * or 10 rotations per second. |
| 623 | */ |
| 624 | double CANTalon::GetSpeed() const { |
| 625 | int32_t speed; |
| 626 | CTR_Code status = m_impl->GetSensorVelocity(speed); |
| 627 | if (status != CTR_OKAY) { |
| 628 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 629 | } |
| 630 | return ScaleNativeUnitsToRpm(m_feedbackDevice, speed); |
| 631 | } |
| 632 | |
| 633 | /** |
| 634 | * Get the position of whatever is in the analog pin of the Talon, regardless of |
| 635 | * whether it is actually being used for feedback. |
| 636 | * |
| 637 | * @returns The 24bit analog value. The bottom ten bits is the ADC (0 - 1023) |
| 638 | * on the analog pin of the Talon. |
| 639 | * The upper 14 bits tracks the overflows and |
| 640 | * underflows (continuous sensor). |
| 641 | */ |
| 642 | int CANTalon::GetAnalogIn() const { |
| 643 | int position; |
| 644 | CTR_Code status = m_impl->GetAnalogInWithOv(position); |
| 645 | if (status != CTR_OKAY) { |
| 646 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 647 | } |
| 648 | return position; |
| 649 | } |
| 650 | |
| 651 | void CANTalon::SetAnalogPosition(int newPosition) { |
| 652 | CTR_Code status = m_impl->SetParam(CanTalonSRX::eAinPosition, newPosition); |
| 653 | if (status != CTR_OKAY) { |
| 654 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 655 | } |
| 656 | } |
| 657 | /** |
| 658 | * Get the position of whatever is in the analog pin of the Talon, regardless of |
| 659 | * whether it is actually being used for feedback. |
| 660 | * |
| 661 | * @returns The ADC (0 - 1023) on analog pin of the Talon. |
| 662 | */ |
| 663 | int CANTalon::GetAnalogInRaw() const { return GetAnalogIn() & 0x3FF; } |
| 664 | /** |
| 665 | * Get the position of whatever is in the analog pin of the Talon, regardless of |
| 666 | * whether it is actually being used for feedback. |
| 667 | * |
| 668 | * @returns The value (0 - 1023) on the analog pin of the Talon. |
| 669 | */ |
| 670 | int CANTalon::GetAnalogInVel() const { |
| 671 | int vel; |
| 672 | CTR_Code status = m_impl->GetAnalogInVel(vel); |
| 673 | if (status != CTR_OKAY) { |
| 674 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 675 | } |
| 676 | return vel; |
| 677 | } |
| 678 | |
| 679 | /** |
| 680 | * Get the position of whatever is in the analog pin of the Talon, regardless of |
| 681 | * whether it is actually being used for feedback. |
| 682 | * |
| 683 | * @returns The value (0 - 1023) on the analog pin of the Talon. |
| 684 | */ |
| 685 | int CANTalon::GetEncPosition() const { |
| 686 | int position; |
| 687 | CTR_Code status = m_impl->GetEncPosition(position); |
| 688 | if (status != CTR_OKAY) { |
| 689 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 690 | } |
| 691 | return position; |
| 692 | } |
| 693 | void CANTalon::SetEncPosition(int newPosition) { |
| 694 | CTR_Code status = m_impl->SetParam(CanTalonSRX::eEncPosition, newPosition); |
| 695 | if (status != CTR_OKAY) { |
| 696 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | /** |
| 701 | * Get the position of whatever is in the analog pin of the Talon, regardless of |
| 702 | * whether it is actually being used for feedback. |
| 703 | * |
| 704 | * @returns The value (0 - 1023) on the analog pin of the Talon. |
| 705 | */ |
| 706 | int CANTalon::GetEncVel() const { |
| 707 | int vel; |
| 708 | CTR_Code status = m_impl->GetEncVel(vel); |
| 709 | if (status != CTR_OKAY) { |
| 710 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 711 | } |
| 712 | return vel; |
| 713 | } |
| 714 | int CANTalon::GetPulseWidthPosition() const { |
| 715 | int param; |
| 716 | CTR_Code status = m_impl->GetPulseWidthPosition(param); |
| 717 | if (status != CTR_OKAY) |
| 718 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 719 | return param; |
| 720 | } |
| 721 | void CANTalon::SetPulseWidthPosition(int newPosition) |
| 722 | { |
| 723 | CTR_Code status = m_impl->SetParam(CanTalonSRX::ePwdPosition, newPosition); |
| 724 | if (status != CTR_OKAY) { |
| 725 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 726 | } |
| 727 | } |
| 728 | int CANTalon::GetPulseWidthVelocity()const |
| 729 | { |
| 730 | int param; |
| 731 | CTR_Code status = m_impl->GetPulseWidthVelocity(param); |
| 732 | if (status != CTR_OKAY) |
| 733 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 734 | return param; |
| 735 | } |
| 736 | int CANTalon::GetPulseWidthRiseToFallUs()const |
| 737 | { |
| 738 | int param; |
| 739 | CTR_Code status = m_impl->GetPulseWidthRiseToFallUs(param); |
| 740 | if (status != CTR_OKAY) |
| 741 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 742 | return param; |
| 743 | } |
| 744 | int CANTalon::GetPulseWidthRiseToRiseUs()const |
| 745 | { |
| 746 | int param; |
| 747 | CTR_Code status = m_impl->GetPulseWidthRiseToRiseUs(param); |
| 748 | if (status != CTR_OKAY) |
| 749 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 750 | return param; |
| 751 | } |
| 752 | /** |
| 753 | * @param which feedback sensor to check it if is connected. |
| 754 | * @return status of caller's specified sensor type. |
| 755 | */ |
| 756 | CANTalon::FeedbackDeviceStatus CANTalon::IsSensorPresent(FeedbackDevice feedbackDevice)const |
| 757 | { |
| 758 | FeedbackDeviceStatus retval = FeedbackStatusUnknown; |
| 759 | int param; |
| 760 | /* detecting sensor health depends on which sensor caller cares about */ |
| 761 | switch (feedbackDevice) { |
| 762 | case QuadEncoder: |
| 763 | case AnalogPot: |
| 764 | case AnalogEncoder: |
| 765 | case EncRising: |
| 766 | case EncFalling: |
| 767 | /* no real good way to tell if these sensor |
| 768 | are actually present so return status unknown. */ |
| 769 | break; |
| 770 | case PulseWidth: |
| 771 | case CtreMagEncoder_Relative: |
| 772 | case CtreMagEncoder_Absolute: |
| 773 | /* all of these require pulse width signal to be present. */ |
| 774 | CTR_Code status = m_impl->IsPulseWidthSensorPresent(param); |
| 775 | if (status != CTR_OKAY) { |
| 776 | /* we're not getting status info, signal unknown status */ |
| 777 | } else { |
| 778 | /* param is updated */ |
| 779 | if (param) { |
| 780 | /* pulse signal is present, sensor must be working since it always |
| 781 | generates a pulse waveform.*/ |
| 782 | retval = FeedbackStatusPresent; |
| 783 | } else { |
| 784 | /* no pulse present, sensor disconnected */ |
| 785 | retval = FeedbackStatusNotPresent; |
| 786 | } |
| 787 | } |
| 788 | break; |
| 789 | } |
| 790 | return retval; |
| 791 | } |
| 792 | /** |
| 793 | * @return IO level of QUADA pin. |
| 794 | */ |
| 795 | int CANTalon::GetPinStateQuadA() const { |
| 796 | int retval; |
| 797 | CTR_Code status = m_impl->GetQuadApin(retval); |
| 798 | if (status != CTR_OKAY) { |
| 799 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 800 | } |
| 801 | return retval; |
| 802 | } |
| 803 | /** |
| 804 | * @return IO level of QUADB pin. |
| 805 | */ |
| 806 | int CANTalon::GetPinStateQuadB() const { |
| 807 | int retval; |
| 808 | CTR_Code status = m_impl->GetQuadBpin(retval); |
| 809 | if (status != CTR_OKAY) { |
| 810 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 811 | } |
| 812 | return retval; |
| 813 | } |
| 814 | /** |
| 815 | * @return IO level of QUAD Index pin. |
| 816 | */ |
| 817 | int CANTalon::GetPinStateQuadIdx() const { |
| 818 | int retval; |
| 819 | CTR_Code status = m_impl->GetQuadIdxpin(retval); |
| 820 | if (status != CTR_OKAY) { |
| 821 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 822 | } |
| 823 | return retval; |
| 824 | } |
| 825 | /** |
| 826 | * @return '1' iff forward limit switch is closed, 0 iff switch is open. |
| 827 | * This function works regardless if limit switch feature is enabled. |
| 828 | */ |
| 829 | int CANTalon::IsFwdLimitSwitchClosed() const { |
| 830 | int retval; |
| 831 | CTR_Code status = m_impl->GetLimitSwitchClosedFor( |
| 832 | retval); /* rename this func, '1' => open, '0' => closed */ |
| 833 | if (status != CTR_OKAY) { |
| 834 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 835 | } |
| 836 | return retval ? 0 : 1; |
| 837 | } |
| 838 | /** |
| 839 | * @return '1' iff reverse limit switch is closed, 0 iff switch is open. |
| 840 | * This function works regardless if limit switch feature is enabled. |
| 841 | */ |
| 842 | int CANTalon::IsRevLimitSwitchClosed() const { |
| 843 | int retval; |
| 844 | CTR_Code status = m_impl->GetLimitSwitchClosedRev( |
| 845 | retval); /* rename this func, '1' => open, '0' => closed */ |
| 846 | if (status != CTR_OKAY) { |
| 847 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 848 | } |
| 849 | return retval ? 0 : 1; |
| 850 | } |
| 851 | /* |
| 852 | * Simple accessor for tracked rise eventso index pin. |
| 853 | * @return number of rising edges on idx pin. |
| 854 | */ |
| 855 | int CANTalon::GetNumberOfQuadIdxRises() const { |
| 856 | int rises; |
| 857 | CTR_Code status = m_impl->GetEncIndexRiseEvents( |
| 858 | rises); /* rename this func, '1' => open, '0' => closed */ |
| 859 | if (status != CTR_OKAY) { |
| 860 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 861 | } |
| 862 | return rises; |
| 863 | } |
| 864 | /* |
| 865 | * @param rises integral value to set into index-rises register. Great way to |
| 866 | * zero the index count. |
| 867 | */ |
| 868 | void CANTalon::SetNumberOfQuadIdxRises(int rises) { |
| 869 | CTR_Code status = m_impl->SetParam( |
| 870 | CanTalonSRX::eEncIndexRiseEvents, |
| 871 | rises); /* rename this func, '1' => open, '0' => closed */ |
| 872 | if (status != CTR_OKAY) { |
| 873 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 874 | } |
| 875 | } |
| 876 | /** |
| 877 | * TODO documentation (see CANJaguar.cpp) |
| 878 | */ |
| 879 | bool CANTalon::GetForwardLimitOK() const { |
| 880 | int limSwit = 0; |
| 881 | int softLim = 0; |
| 882 | CTR_Code status = CTR_OKAY; |
| 883 | status = m_impl->GetFault_ForSoftLim(softLim); |
| 884 | if (status != CTR_OKAY) { |
| 885 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 886 | } |
| 887 | status = m_impl->GetFault_ForLim(limSwit); |
| 888 | if (status != CTR_OKAY) { |
| 889 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 890 | } |
| 891 | /* If either fault is asserted, signal caller we are disabled (with false?) */ |
| 892 | return (softLim | limSwit) ? false : true; |
| 893 | } |
| 894 | |
| 895 | /** |
| 896 | * TODO documentation (see CANJaguar.cpp) |
| 897 | */ |
| 898 | bool CANTalon::GetReverseLimitOK() const { |
| 899 | int limSwit = 0; |
| 900 | int softLim = 0; |
| 901 | CTR_Code status = CTR_OKAY; |
| 902 | status = m_impl->GetFault_RevSoftLim(softLim); |
| 903 | if (status != CTR_OKAY) { |
| 904 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 905 | } |
| 906 | status = m_impl->GetFault_RevLim(limSwit); |
| 907 | if (status != CTR_OKAY) { |
| 908 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 909 | } |
| 910 | /* If either fault is asserted, signal caller we are disabled (with false?) */ |
| 911 | return (softLim | limSwit) ? false : true; |
| 912 | } |
| 913 | |
| 914 | /** |
| 915 | * TODO documentation (see CANJaguar.cpp) |
| 916 | */ |
| 917 | uint16_t CANTalon::GetFaults() const { |
| 918 | uint16_t retval = 0; |
| 919 | int val; |
| 920 | CTR_Code status = CTR_OKAY; |
| 921 | |
| 922 | /* temperature */ |
| 923 | val = 0; |
| 924 | status = m_impl->GetFault_OverTemp(val); |
| 925 | if (status != CTR_OKAY) |
| 926 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 927 | retval |= (val) ? CANSpeedController::kTemperatureFault : 0; |
| 928 | |
| 929 | /* voltage */ |
| 930 | val = 0; |
| 931 | status = m_impl->GetFault_UnderVoltage(val); |
| 932 | if (status != CTR_OKAY) |
| 933 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 934 | retval |= (val) ? CANSpeedController::kBusVoltageFault : 0; |
| 935 | |
| 936 | /* fwd-limit-switch */ |
| 937 | val = 0; |
| 938 | status = m_impl->GetFault_ForLim(val); |
| 939 | if (status != CTR_OKAY) |
| 940 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 941 | retval |= (val) ? CANSpeedController::kFwdLimitSwitch : 0; |
| 942 | |
| 943 | /* rev-limit-switch */ |
| 944 | val = 0; |
| 945 | status = m_impl->GetFault_RevLim(val); |
| 946 | if (status != CTR_OKAY) |
| 947 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 948 | retval |= (val) ? CANSpeedController::kRevLimitSwitch : 0; |
| 949 | |
| 950 | /* fwd-soft-limit */ |
| 951 | val = 0; |
| 952 | status = m_impl->GetFault_ForSoftLim(val); |
| 953 | if (status != CTR_OKAY) |
| 954 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 955 | retval |= (val) ? CANSpeedController::kFwdSoftLimit : 0; |
| 956 | |
| 957 | /* rev-soft-limit */ |
| 958 | val = 0; |
| 959 | status = m_impl->GetFault_RevSoftLim(val); |
| 960 | if (status != CTR_OKAY) |
| 961 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 962 | retval |= (val) ? CANSpeedController::kRevSoftLimit : 0; |
| 963 | |
| 964 | return retval; |
| 965 | } |
| 966 | uint16_t CANTalon::GetStickyFaults() const { |
| 967 | uint16_t retval = 0; |
| 968 | int val; |
| 969 | CTR_Code status = CTR_OKAY; |
| 970 | |
| 971 | /* temperature */ |
| 972 | val = 0; |
| 973 | status = m_impl->GetStckyFault_OverTemp(val); |
| 974 | if (status != CTR_OKAY) |
| 975 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 976 | retval |= (val) ? CANSpeedController::kTemperatureFault : 0; |
| 977 | |
| 978 | /* voltage */ |
| 979 | val = 0; |
| 980 | status = m_impl->GetStckyFault_UnderVoltage(val); |
| 981 | if (status != CTR_OKAY) |
| 982 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 983 | retval |= (val) ? CANSpeedController::kBusVoltageFault : 0; |
| 984 | |
| 985 | /* fwd-limit-switch */ |
| 986 | val = 0; |
| 987 | status = m_impl->GetStckyFault_ForLim(val); |
| 988 | if (status != CTR_OKAY) |
| 989 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 990 | retval |= (val) ? CANSpeedController::kFwdLimitSwitch : 0; |
| 991 | |
| 992 | /* rev-limit-switch */ |
| 993 | val = 0; |
| 994 | status = m_impl->GetStckyFault_RevLim(val); |
| 995 | if (status != CTR_OKAY) |
| 996 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 997 | retval |= (val) ? CANSpeedController::kRevLimitSwitch : 0; |
| 998 | |
| 999 | /* fwd-soft-limit */ |
| 1000 | val = 0; |
| 1001 | status = m_impl->GetStckyFault_ForSoftLim(val); |
| 1002 | if (status != CTR_OKAY) |
| 1003 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1004 | retval |= (val) ? CANSpeedController::kFwdSoftLimit : 0; |
| 1005 | |
| 1006 | /* rev-soft-limit */ |
| 1007 | val = 0; |
| 1008 | status = m_impl->GetStckyFault_RevSoftLim(val); |
| 1009 | if (status != CTR_OKAY) |
| 1010 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1011 | retval |= (val) ? CANSpeedController::kRevSoftLimit : 0; |
| 1012 | |
| 1013 | return retval; |
| 1014 | } |
| 1015 | void CANTalon::ClearStickyFaults() { |
| 1016 | CTR_Code status = m_impl->ClearStickyFaults(); |
| 1017 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1018 | } |
| 1019 | |
| 1020 | /** |
| 1021 | * Set the maximum voltage change rate. This ramp rate is in affect regardless |
| 1022 | * of which control mode |
| 1023 | * the TALON is in. |
| 1024 | * |
| 1025 | * When in PercentVbus or Voltage output mode, the rate at which the voltage |
| 1026 | * changes can |
| 1027 | * be limited to reduce current spikes. Set this to 0.0 to disable rate |
| 1028 | * limiting. |
| 1029 | * |
| 1030 | * @param rampRate The maximum rate of voltage change in Percent Voltage mode in |
| 1031 | * V/s. |
| 1032 | */ |
| 1033 | void CANTalon::SetVoltageRampRate(double rampRate) { |
| 1034 | /* Caller is expressing ramp as Voltage per sec, assuming 12V is full. |
| 1035 | Talon's throttle ramp is in dThrot/d10ms. 1023 is full fwd, -1023 is |
| 1036 | full rev. */ |
| 1037 | double rampRatedThrotPer10ms = (rampRate * 1023.0 / 12.0) / 100; |
| 1038 | CTR_Code status = m_impl->SetRampThrottle((int)rampRatedThrotPer10ms); |
| 1039 | if (status != CTR_OKAY) { |
| 1040 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1041 | } |
| 1042 | } |
| 1043 | void CANTalon::SetVoltageCompensationRampRate(double rampRate) { |
| 1044 | /* when in voltage compensation mode, the voltage compensation rate |
| 1045 | directly caps the change in target voltage */ |
| 1046 | CTR_Code status = CTR_OKAY; |
| 1047 | status = m_impl->SetVoltageCompensationRate(rampRate / 1000); |
| 1048 | if (status != CTR_OKAY) { |
| 1049 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1050 | } |
| 1051 | } |
| 1052 | /** |
| 1053 | * Sets a voltage change rate that applies only when a close loop contorl mode |
| 1054 | * is enabled. |
| 1055 | * This allows close loop specific ramp behavior. |
| 1056 | * |
| 1057 | * @param rampRate The maximum rate of voltage change in Percent Voltage mode in |
| 1058 | * V/s. |
| 1059 | */ |
| 1060 | void CANTalon::SetCloseLoopRampRate(double rampRate) { |
| 1061 | CTR_Code status = m_impl->SetCloseLoopRampRate( |
| 1062 | m_profile, rampRate * 1023.0 / 12.0 / 1000.0); |
| 1063 | if (status != CTR_OKAY) { |
| 1064 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | /** |
| 1069 | * @return The version of the firmware running on the Talon |
| 1070 | */ |
| 1071 | uint32_t CANTalon::GetFirmwareVersion() const { |
| 1072 | int firmwareVersion; |
| 1073 | CTR_Code status = m_impl->RequestParam(CanTalonSRX::eFirmVers); |
| 1074 | if (status != CTR_OKAY) { |
| 1075 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1076 | } |
| 1077 | usleep(kDelayForSolicitedSignalsUs); |
| 1078 | status = |
| 1079 | m_impl->GetParamResponseInt32(CanTalonSRX::eFirmVers, firmwareVersion); |
| 1080 | if (status != CTR_OKAY) { |
| 1081 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1082 | } |
| 1083 | |
| 1084 | /* only sent once on boot */ |
| 1085 | // CTR_Code status = m_impl->GetFirmVers(firmwareVersion); |
| 1086 | // if (status != CTR_OKAY) { |
| 1087 | // wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1088 | //} |
| 1089 | |
| 1090 | return firmwareVersion; |
| 1091 | } |
| 1092 | /** |
| 1093 | * @return The accumulator for I gain. |
| 1094 | */ |
| 1095 | int CANTalon::GetIaccum() const { |
| 1096 | CTR_Code status = m_impl->RequestParam(CanTalonSRX::ePidIaccum); |
| 1097 | if (status != CTR_OKAY) { |
| 1098 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1099 | } |
| 1100 | usleep(kDelayForSolicitedSignalsUs); /* small yield for getting response */ |
| 1101 | int iaccum; |
| 1102 | status = m_impl->GetParamResponseInt32(CanTalonSRX::ePidIaccum, iaccum); |
| 1103 | if (status != CTR_OKAY) { |
| 1104 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1105 | } |
| 1106 | return iaccum; |
| 1107 | } |
| 1108 | /** |
| 1109 | * Clear the accumulator for I gain. |
| 1110 | */ |
| 1111 | void CANTalon::ClearIaccum() { |
| 1112 | CTR_Code status = m_impl->SetParam(CanTalonSRX::ePidIaccum, 0); |
| 1113 | if (status != CTR_OKAY) { |
| 1114 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | /** |
| 1119 | * TODO documentation (see CANJaguar.cpp) |
| 1120 | */ |
| 1121 | void CANTalon::ConfigNeutralMode(NeutralMode mode) { |
| 1122 | CTR_Code status = CTR_OKAY; |
| 1123 | switch (mode) { |
| 1124 | default: |
| 1125 | case kNeutralMode_Jumper: /* use default setting in flash based on |
| 1126 | webdash/BrakeCal button selection */ |
| 1127 | status = m_impl->SetOverrideBrakeType( |
| 1128 | CanTalonSRX::kBrakeOverride_UseDefaultsFromFlash); |
| 1129 | break; |
| 1130 | case kNeutralMode_Brake: |
| 1131 | status = m_impl->SetOverrideBrakeType( |
| 1132 | CanTalonSRX::kBrakeOverride_OverrideBrake); |
| 1133 | break; |
| 1134 | case kNeutralMode_Coast: |
| 1135 | status = m_impl->SetOverrideBrakeType( |
| 1136 | CanTalonSRX::kBrakeOverride_OverrideCoast); |
| 1137 | break; |
| 1138 | } |
| 1139 | if (status != CTR_OKAY) { |
| 1140 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1141 | } |
| 1142 | } |
| 1143 | /** |
| 1144 | * @return nonzero if brake is enabled during neutral. Zero if coast is enabled |
| 1145 | * during neutral. |
| 1146 | */ |
| 1147 | int CANTalon::GetBrakeEnableDuringNeutral() const { |
| 1148 | int brakeEn = 0; |
| 1149 | CTR_Code status = m_impl->GetBrakeIsEnabled(brakeEn); |
| 1150 | if (status != CTR_OKAY) { |
| 1151 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1152 | } |
| 1153 | return brakeEn; |
| 1154 | } |
| 1155 | /** |
| 1156 | * Configure how many codes per revolution are generated by your encoder. |
| 1157 | * |
| 1158 | * @param codesPerRev The number of counts per revolution. |
| 1159 | */ |
| 1160 | void CANTalon::ConfigEncoderCodesPerRev(uint16_t codesPerRev) { |
| 1161 | /* first save the scalar so that all getters/setter work as the user expects */ |
| 1162 | m_codesPerRev = codesPerRev; |
| 1163 | /* next send the scalar to the Talon over CAN. This is so that the Talon can report |
| 1164 | it to whoever needs it, like the webdash. Don't bother checking the return, |
| 1165 | this is only for instrumentation and is not necessary for Talon functionality. */ |
| 1166 | (void)m_impl->SetParam(CanTalonSRX::eNumberEncoderCPR, m_codesPerRev); |
| 1167 | } |
| 1168 | |
| 1169 | /** |
| 1170 | * Configure the number of turns on the potentiometer. |
| 1171 | * |
| 1172 | * @param turns The number of turns of the potentiometer. |
| 1173 | */ |
| 1174 | void CANTalon::ConfigPotentiometerTurns(uint16_t turns) { |
| 1175 | /* first save the scalar so that all getters/setter work as the user expects */ |
| 1176 | m_numPotTurns = turns; |
| 1177 | /* next send the scalar to the Talon over CAN. This is so that the Talon can report |
| 1178 | it to whoever needs it, like the webdash. Don't bother checking the return, |
| 1179 | this is only for instrumentation and is not necessary for Talon functionality. */ |
| 1180 | (void)m_impl->SetParam(CanTalonSRX::eNumberPotTurns, m_numPotTurns); |
| 1181 | } |
| 1182 | |
| 1183 | /** |
| 1184 | * @deprecated not implemented |
| 1185 | */ |
| 1186 | void CANTalon::ConfigSoftPositionLimits(double forwardLimitPosition, |
| 1187 | double reverseLimitPosition) { |
| 1188 | ConfigLimitMode(kLimitMode_SoftPositionLimits); |
| 1189 | ConfigForwardLimit(forwardLimitPosition); |
| 1190 | ConfigReverseLimit(reverseLimitPosition); |
| 1191 | } |
| 1192 | |
| 1193 | /** |
| 1194 | * TODO documentation (see CANJaguar.cpp) |
| 1195 | */ |
| 1196 | void CANTalon::DisableSoftPositionLimits() { |
| 1197 | ConfigLimitMode(kLimitMode_SwitchInputsOnly); |
| 1198 | } |
| 1199 | |
| 1200 | /** |
| 1201 | * TODO documentation (see CANJaguar.cpp) |
| 1202 | * Configures the soft limit enable (wear leveled persistent memory). |
| 1203 | * Also sets the limit switch overrides. |
| 1204 | */ |
| 1205 | void CANTalon::ConfigLimitMode(LimitMode mode) { |
| 1206 | CTR_Code status = CTR_OKAY; |
| 1207 | switch (mode) { |
| 1208 | case kLimitMode_SwitchInputsOnly: /** Only use switches for limits */ |
| 1209 | /* turn OFF both limits. SRX has individual enables and polarity for each |
| 1210 | * limit switch.*/ |
| 1211 | status = m_impl->SetForwardSoftEnable(false); |
| 1212 | if (status != CTR_OKAY) { |
| 1213 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1214 | } |
| 1215 | status = m_impl->SetReverseSoftEnable(false); |
| 1216 | if (status != CTR_OKAY) { |
| 1217 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1218 | } |
| 1219 | /* override enable the limit switches, this circumvents the webdash */ |
| 1220 | status = m_impl->SetOverrideLimitSwitchEn( |
| 1221 | CanTalonSRX::kLimitSwitchOverride_EnableFwd_EnableRev); |
| 1222 | if (status != CTR_OKAY) { |
| 1223 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1224 | } |
| 1225 | break; |
| 1226 | case kLimitMode_SoftPositionLimits: /** Use both switches and soft limits */ |
| 1227 | /* turn on both limits. SRX has individual enables and polarity for each |
| 1228 | * limit switch.*/ |
| 1229 | status = m_impl->SetForwardSoftEnable(true); |
| 1230 | if (status != CTR_OKAY) { |
| 1231 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1232 | } |
| 1233 | status = m_impl->SetReverseSoftEnable(true); |
| 1234 | if (status != CTR_OKAY) { |
| 1235 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1236 | } |
| 1237 | /* override enable the limit switches, this circumvents the webdash */ |
| 1238 | status = m_impl->SetOverrideLimitSwitchEn( |
| 1239 | CanTalonSRX::kLimitSwitchOverride_EnableFwd_EnableRev); |
| 1240 | if (status != CTR_OKAY) { |
| 1241 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1242 | } |
| 1243 | break; |
| 1244 | |
| 1245 | case kLimitMode_SrxDisableSwitchInputs: /** disable both limit switches and |
| 1246 | soft limits */ |
| 1247 | /* turn on both limits. SRX has individual enables and polarity for each |
| 1248 | * limit switch.*/ |
| 1249 | status = m_impl->SetForwardSoftEnable(false); |
| 1250 | if (status != CTR_OKAY) { |
| 1251 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1252 | } |
| 1253 | status = m_impl->SetReverseSoftEnable(false); |
| 1254 | if (status != CTR_OKAY) { |
| 1255 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1256 | } |
| 1257 | /* override enable the limit switches, this circumvents the webdash */ |
| 1258 | status = m_impl->SetOverrideLimitSwitchEn( |
| 1259 | CanTalonSRX::kLimitSwitchOverride_DisableFwd_DisableRev); |
| 1260 | if (status != CTR_OKAY) { |
| 1261 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1262 | } |
| 1263 | break; |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | /** |
| 1268 | * TODO documentation (see CANJaguar.cpp) |
| 1269 | */ |
| 1270 | void CANTalon::ConfigForwardLimit(double forwardLimitPosition) { |
| 1271 | CTR_Code status = CTR_OKAY; |
| 1272 | int32_t nativeLimitPos = ScaleRotationsToNativeUnits(m_feedbackDevice, forwardLimitPosition); |
| 1273 | status = m_impl->SetForwardSoftLimit(nativeLimitPos); |
| 1274 | if (status != CTR_OKAY) { |
| 1275 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1276 | } |
| 1277 | } |
| 1278 | /** |
| 1279 | * Change the fwd limit switch setting to normally open or closed. |
| 1280 | * Talon will disable momentarilly if the Talon's current setting |
| 1281 | * is dissimilar to the caller's requested setting. |
| 1282 | * |
| 1283 | * Since Talon saves setting to flash this should only affect |
| 1284 | * a given Talon initially during robot install. |
| 1285 | * |
| 1286 | * @param normallyOpen true for normally open. false for normally closed. |
| 1287 | */ |
| 1288 | void CANTalon::ConfigFwdLimitSwitchNormallyOpen(bool normallyOpen) { |
| 1289 | CTR_Code status = |
| 1290 | m_impl->SetParam(CanTalonSRX::eOnBoot_LimitSwitch_Forward_NormallyClosed, |
| 1291 | normallyOpen ? 0 : 1); |
| 1292 | if (status != CTR_OKAY) { |
| 1293 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1294 | } |
| 1295 | } |
| 1296 | /** |
| 1297 | * Change the rev limit switch setting to normally open or closed. |
| 1298 | * Talon will disable momentarilly if the Talon's current setting |
| 1299 | * is dissimilar to the caller's requested setting. |
| 1300 | * |
| 1301 | * Since Talon saves setting to flash this should only affect |
| 1302 | * a given Talon initially during robot install. |
| 1303 | * |
| 1304 | * @param normallyOpen true for normally open. false for normally closed. |
| 1305 | */ |
| 1306 | void CANTalon::ConfigRevLimitSwitchNormallyOpen(bool normallyOpen) { |
| 1307 | CTR_Code status = |
| 1308 | m_impl->SetParam(CanTalonSRX::eOnBoot_LimitSwitch_Reverse_NormallyClosed, |
| 1309 | normallyOpen ? 0 : 1); |
| 1310 | if (status != CTR_OKAY) { |
| 1311 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1312 | } |
| 1313 | } |
| 1314 | /** |
| 1315 | * TODO documentation (see CANJaguar.cpp) |
| 1316 | */ |
| 1317 | void CANTalon::ConfigReverseLimit(double reverseLimitPosition) { |
| 1318 | CTR_Code status = CTR_OKAY; |
| 1319 | int32_t nativeLimitPos = ScaleRotationsToNativeUnits(m_feedbackDevice, reverseLimitPosition); |
| 1320 | status = m_impl->SetReverseSoftLimit(nativeLimitPos); |
| 1321 | if (status != CTR_OKAY) { |
| 1322 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1323 | } |
| 1324 | } |
| 1325 | /** |
| 1326 | * TODO documentation (see CANJaguar.cpp) |
| 1327 | */ |
| 1328 | void CANTalon::ConfigMaxOutputVoltage(double voltage) { |
| 1329 | /* config peak throttle when in closed-loop mode in the fwd and rev direction. */ |
| 1330 | ConfigPeakOutputVoltage(voltage, -voltage); |
| 1331 | } |
| 1332 | void CANTalon::ConfigPeakOutputVoltage(double forwardVoltage,double reverseVoltage) { |
| 1333 | /* bounds checking */ |
| 1334 | if (forwardVoltage > 12) |
| 1335 | forwardVoltage = 12; |
| 1336 | else if (forwardVoltage < 0) |
| 1337 | forwardVoltage = 0; |
| 1338 | if (reverseVoltage > 0) |
| 1339 | reverseVoltage = 0; |
| 1340 | else if (reverseVoltage < -12) |
| 1341 | reverseVoltage = -12; |
| 1342 | /* config calls */ |
| 1343 | ConfigSetParameter(CanTalonSRX::ePeakPosOutput, 1023 * forwardVoltage / 12.0); |
| 1344 | ConfigSetParameter(CanTalonSRX::ePeakNegOutput, 1023 * reverseVoltage / 12.0); |
| 1345 | } |
| 1346 | void CANTalon::ConfigNominalOutputVoltage(double forwardVoltage,double reverseVoltage) { |
| 1347 | /* bounds checking */ |
| 1348 | if (forwardVoltage > 12) |
| 1349 | forwardVoltage = 12; |
| 1350 | else if (forwardVoltage < 0) |
| 1351 | forwardVoltage = 0; |
| 1352 | if (reverseVoltage > 0) |
| 1353 | reverseVoltage = 0; |
| 1354 | else if (reverseVoltage < -12) |
| 1355 | reverseVoltage = -12; |
| 1356 | /* config calls */ |
| 1357 | ConfigSetParameter(CanTalonSRX::eNominalPosOutput,1023*forwardVoltage/12.0); |
| 1358 | ConfigSetParameter(CanTalonSRX::eNominalNegOutput,1023*reverseVoltage/12.0); |
| 1359 | } |
| 1360 | /** |
| 1361 | * General set frame. Since the parameter is a general integral type, this can |
| 1362 | * be used for testing future features. |
| 1363 | */ |
| 1364 | void CANTalon::ConfigSetParameter(uint32_t paramEnum, double value) { |
| 1365 | CTR_Code status; |
| 1366 | /* config peak throttle when in closed-loop mode in the positive direction. */ |
| 1367 | status = m_impl->SetParam((CanTalonSRX::param_t)paramEnum,value); |
| 1368 | if (status != CTR_OKAY) { |
| 1369 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1370 | } |
| 1371 | } |
| 1372 | /** |
| 1373 | * General get frame. Since the parameter is a general integral type, this can |
| 1374 | * be used for testing future features. |
| 1375 | */ |
| 1376 | bool CANTalon::GetParameter(uint32_t paramEnum, double & dvalue) const { |
| 1377 | bool retval = true; |
| 1378 | /* send the request frame */ |
| 1379 | CTR_Code status = m_impl->RequestParam((CanTalonSRX::param_t)paramEnum); |
| 1380 | if (status != CTR_OKAY) { |
| 1381 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1382 | retval = false; |
| 1383 | } |
| 1384 | /* small yield for getting response */ |
| 1385 | usleep(kDelayForSolicitedSignalsUs); |
| 1386 | /* get the last received update */ |
| 1387 | status = m_impl->GetParamResponse((CanTalonSRX::param_t)paramEnum, dvalue); |
| 1388 | if (status != CTR_OKAY) { |
| 1389 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1390 | retval = false; |
| 1391 | } |
| 1392 | return retval; |
| 1393 | } |
| 1394 | |
| 1395 | /** |
| 1396 | * TODO documentation (see CANJaguar.cpp) |
| 1397 | */ |
| 1398 | void CANTalon::ConfigFaultTime(float faultTime) { |
| 1399 | /* SRX does not have fault time. SRX motor drive is only disabled for soft |
| 1400 | * limits and limit-switch faults. */ |
| 1401 | wpi_setWPIErrorWithContext(IncompatibleMode, "Fault Time not supported."); |
| 1402 | } |
| 1403 | |
| 1404 | /** |
| 1405 | * Fixup the sendMode so Set() serializes the correct demand value. |
| 1406 | * Also fills the modeSelecet in the control frame to disabled. |
| 1407 | * @param mode Control mode to ultimately enter once user calls Set(). |
| 1408 | * @see Set() |
| 1409 | */ |
| 1410 | void CANTalon::ApplyControlMode(CANSpeedController::ControlMode mode) { |
| 1411 | m_controlMode = mode; |
| 1412 | HALReport(HALUsageReporting::kResourceType_CANTalonSRX, m_deviceNumber + 1, |
| 1413 | mode); |
| 1414 | switch (mode) { |
| 1415 | case kPercentVbus: |
| 1416 | m_sendMode = kThrottle; |
| 1417 | break; |
| 1418 | case kCurrent: |
| 1419 | m_sendMode = kCurrentMode; |
| 1420 | break; |
| 1421 | case kSpeed: |
| 1422 | m_sendMode = kSpeedMode; |
| 1423 | break; |
| 1424 | case kPosition: |
| 1425 | m_sendMode = kPositionMode; |
| 1426 | break; |
| 1427 | case kVoltage: |
| 1428 | m_sendMode = kVoltageMode; |
| 1429 | break; |
| 1430 | case kFollower: |
| 1431 | m_sendMode = kFollowerMode; |
| 1432 | break; |
| 1433 | } |
| 1434 | // Keep the talon disabled until Set() is called. |
| 1435 | CTR_Code status = m_impl->SetModeSelect((int)kDisabled); |
| 1436 | if (status != CTR_OKAY) { |
| 1437 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1438 | } |
| 1439 | } |
| 1440 | /** |
| 1441 | * TODO documentation (see CANJaguar.cpp) |
| 1442 | */ |
| 1443 | void CANTalon::SetControlMode(CANSpeedController::ControlMode mode) { |
| 1444 | if (m_controlMode == mode) { |
| 1445 | /* we already are in this mode, don't perform disable workaround */ |
| 1446 | } else { |
| 1447 | ApplyControlMode(mode); |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | /** |
| 1452 | * TODO documentation (see CANJaguar.cpp) |
| 1453 | */ |
| 1454 | CANSpeedController::ControlMode CANTalon::GetControlMode() const { |
| 1455 | return m_controlMode; |
| 1456 | } |
| 1457 | |
| 1458 | void CANTalon::SetExpiration(float timeout) { |
| 1459 | m_safetyHelper->SetExpiration(timeout); |
| 1460 | } |
| 1461 | |
| 1462 | float CANTalon::GetExpiration() const { |
| 1463 | return m_safetyHelper->GetExpiration(); |
| 1464 | } |
| 1465 | |
| 1466 | bool CANTalon::IsAlive() const { return m_safetyHelper->IsAlive(); } |
| 1467 | |
| 1468 | bool CANTalon::IsSafetyEnabled() const { |
| 1469 | return m_safetyHelper->IsSafetyEnabled(); |
| 1470 | } |
| 1471 | |
| 1472 | void CANTalon::SetSafetyEnabled(bool enabled) { |
| 1473 | m_safetyHelper->SetSafetyEnabled(enabled); |
| 1474 | } |
| 1475 | |
| 1476 | void CANTalon::GetDescription(std::ostringstream& desc) const { |
| 1477 | desc << "CANTalon ID " << m_deviceNumber; |
| 1478 | } |
| 1479 | /** |
| 1480 | * @param devToLookup FeedbackDevice to lookup the scalar for. Because Talon |
| 1481 | * allows multiple sensors to be attached simultaneously, caller must |
| 1482 | * specify which sensor to lookup. |
| 1483 | * @return The number of native Talon units per rotation of the selected sensor. |
| 1484 | * Zero if the necessary sensor information is not available. |
| 1485 | * @see ConfigEncoderCodesPerRev |
| 1486 | * @see ConfigPotentiometerTurns |
| 1487 | */ |
| 1488 | double CANTalon::GetNativeUnitsPerRotationScalar(FeedbackDevice devToLookup)const |
| 1489 | { |
| 1490 | bool scalingAvail = false; |
| 1491 | CTR_Code status = CTR_OKAY; |
| 1492 | double retval = 0; |
| 1493 | switch (devToLookup) { |
| 1494 | case QuadEncoder: |
| 1495 | { /* When caller wants to lookup Quadrature, the QEI may be in 1x if the selected feedback is edge counter. |
| 1496 | * Additionally if the quadrature source is the CTRE Mag encoder, then the CPR is known. |
| 1497 | * This is nice in that the calling app does not require knowing the CPR at all. |
| 1498 | * So do both checks here. |
| 1499 | */ |
| 1500 | int32_t qeiPulsePerCount = 4; /* default to 4x */ |
| 1501 | switch (m_feedbackDevice) { |
| 1502 | case CtreMagEncoder_Relative: |
| 1503 | case CtreMagEncoder_Absolute: |
| 1504 | /* we assume the quadrature signal comes from the MagEnc, |
| 1505 | of which we know the CPR already */ |
| 1506 | retval = kNativePwdUnitsPerRotation; |
| 1507 | scalingAvail = true; |
| 1508 | break; |
| 1509 | case EncRising: /* Talon's QEI is setup for 1x, so perform 1x math */ |
| 1510 | case EncFalling: |
| 1511 | qeiPulsePerCount = 1; |
| 1512 | break; |
| 1513 | case QuadEncoder: /* Talon's QEI is 4x */ |
| 1514 | default: /* pulse width and everything else, assume its regular quad use. */ |
| 1515 | break; |
| 1516 | } |
| 1517 | if (scalingAvail) { |
| 1518 | /* already deduced the scalar above, we're done. */ |
| 1519 | } else { |
| 1520 | /* we couldn't deduce the scalar just based on the selection */ |
| 1521 | if (0 == m_codesPerRev) { |
| 1522 | /* caller has never set the CPR. Most likely caller |
| 1523 | is just using engineering units so fall to the |
| 1524 | bottom of this func.*/ |
| 1525 | } else { |
| 1526 | /* Talon expects PPR units */ |
| 1527 | retval = qeiPulsePerCount * m_codesPerRev; |
| 1528 | scalingAvail = true; |
| 1529 | } |
| 1530 | } |
| 1531 | } break; |
| 1532 | case EncRising: |
| 1533 | case EncFalling: |
| 1534 | if (0 == m_codesPerRev) { |
| 1535 | /* caller has never set the CPR. Most likely caller |
| 1536 | is just using engineering units so fall to the |
| 1537 | bottom of this func.*/ |
| 1538 | } else { |
| 1539 | /* Talon expects PPR units */ |
| 1540 | retval = 1 * m_codesPerRev; |
| 1541 | scalingAvail = true; |
| 1542 | } |
| 1543 | break; |
| 1544 | case AnalogPot: |
| 1545 | case AnalogEncoder: |
| 1546 | if (0 == m_numPotTurns) { |
| 1547 | /* caller has never set the CPR. Most likely caller |
| 1548 | is just using engineering units so fall to the |
| 1549 | bottom of this func.*/ |
| 1550 | } else { |
| 1551 | retval = (double)kNativeAdcUnitsPerRotation / m_numPotTurns; |
| 1552 | scalingAvail = true; |
| 1553 | } |
| 1554 | break; |
| 1555 | case CtreMagEncoder_Relative: |
| 1556 | case CtreMagEncoder_Absolute: |
| 1557 | case PulseWidth: |
| 1558 | retval = kNativePwdUnitsPerRotation; |
| 1559 | scalingAvail = true; |
| 1560 | break; |
| 1561 | } |
| 1562 | /* handle any detected errors */ |
| 1563 | if (status != CTR_OKAY) { |
| 1564 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 1565 | } |
| 1566 | /* if scaling information is not possible, signal caller |
| 1567 | by returning zero */ |
| 1568 | if (false == scalingAvail) |
| 1569 | retval = 0; |
| 1570 | return retval; |
| 1571 | } |
| 1572 | /** |
| 1573 | * @param fullRotations double precision value representing number of rotations of selected feedback sensor. |
| 1574 | * If user has never called the config routine for the selected sensor, then the caller |
| 1575 | * is likely passing rotations in engineering units already, in which case it is returned |
| 1576 | * as is. |
| 1577 | * @see ConfigPotentiometerTurns |
| 1578 | * @see ConfigEncoderCodesPerRev |
| 1579 | * @return fullRotations in native engineering units of the Talon SRX firmware. |
| 1580 | */ |
| 1581 | int32_t CANTalon::ScaleRotationsToNativeUnits(FeedbackDevice devToLookup,double fullRotations)const |
| 1582 | { |
| 1583 | /* first assume we don't have config info, prep the default return */ |
| 1584 | int32_t retval = (int32_t)fullRotations; |
| 1585 | /* retrieve scaling info */ |
| 1586 | double scalar = GetNativeUnitsPerRotationScalar(devToLookup); |
| 1587 | /* apply scalar if its available */ |
| 1588 | if (scalar > 0) |
| 1589 | retval = (int32_t)(fullRotations*scalar); |
| 1590 | return retval; |
| 1591 | } |
| 1592 | /** |
| 1593 | * @param rpm double precision value representing number of rotations per minute of selected feedback sensor. |
| 1594 | * If user has never called the config routine for the selected sensor, then the caller |
| 1595 | * is likely passing rotations in engineering units already, in which case it is returned |
| 1596 | * as is. |
| 1597 | * @see ConfigPotentiometerTurns |
| 1598 | * @see ConfigEncoderCodesPerRev |
| 1599 | * @return sensor velocity in native engineering units of the Talon SRX firmware. |
| 1600 | */ |
| 1601 | int32_t CANTalon::ScaleVelocityToNativeUnits(FeedbackDevice devToLookup,double rpm)const |
| 1602 | { |
| 1603 | /* first assume we don't have config info, prep the default return */ |
| 1604 | int32_t retval = (int32_t)rpm; |
| 1605 | /* retrieve scaling info */ |
| 1606 | double scalar = GetNativeUnitsPerRotationScalar(devToLookup); |
| 1607 | /* apply scalar if its available */ |
| 1608 | if (scalar > 0) |
| 1609 | retval = (int32_t)(rpm * kMinutesPer100msUnit * scalar); |
| 1610 | return retval; |
| 1611 | } |
| 1612 | /** |
| 1613 | * @param nativePos integral position of the feedback sensor in native Talon SRX units. |
| 1614 | * If user has never called the config routine for the selected sensor, then the return |
| 1615 | * will be in TALON SRX units as well to match the behavior in the 2015 season. |
| 1616 | * @see ConfigPotentiometerTurns |
| 1617 | * @see ConfigEncoderCodesPerRev |
| 1618 | * @return double precision number of rotations, unless config was never performed. |
| 1619 | */ |
| 1620 | double CANTalon::ScaleNativeUnitsToRotations(FeedbackDevice devToLookup,int32_t nativePos)const |
| 1621 | { |
| 1622 | /* first assume we don't have config info, prep the default return */ |
| 1623 | double retval = (double)nativePos; |
| 1624 | /* retrieve scaling info */ |
| 1625 | double scalar = GetNativeUnitsPerRotationScalar(devToLookup); |
| 1626 | /* apply scalar if its available */ |
| 1627 | if (scalar > 0) |
| 1628 | retval = ((double)nativePos) / scalar; |
| 1629 | return retval; |
| 1630 | } |
| 1631 | /** |
| 1632 | * @param nativeVel integral velocity of the feedback sensor in native Talon SRX units. |
| 1633 | * If user has never called the config routine for the selected sensor, then the return |
| 1634 | * will be in TALON SRX units as well to match the behavior in the 2015 season. |
| 1635 | * @see ConfigPotentiometerTurns |
| 1636 | * @see ConfigEncoderCodesPerRev |
| 1637 | * @return double precision of sensor velocity in RPM, unless config was never performed. |
| 1638 | */ |
| 1639 | double CANTalon::ScaleNativeUnitsToRpm(FeedbackDevice devToLookup, int32_t nativeVel)const |
| 1640 | { |
| 1641 | /* first assume we don't have config info, prep the default return */ |
| 1642 | double retval = (double)nativeVel; |
| 1643 | /* retrieve scaling info */ |
| 1644 | double scalar = GetNativeUnitsPerRotationScalar(devToLookup); |
| 1645 | /* apply scalar if its available */ |
| 1646 | if (scalar > 0) |
| 1647 | retval = (double)(nativeVel) / (scalar*kMinutesPer100msUnit); |
| 1648 | return retval; |
| 1649 | } |
| 1650 | |
| 1651 | /** |
| 1652 | * Enables Talon SRX to automatically zero the Sensor Position whenever an |
| 1653 | * edge is detected on the index signal. |
| 1654 | * @param enable boolean input, pass true to enable feature or false to disable. |
| 1655 | * @param risingEdge boolean input, pass true to clear the position on rising edge, |
| 1656 | * pass false to clear the position on falling edge. |
| 1657 | */ |
| 1658 | void CANTalon::EnableZeroSensorPositionOnIndex(bool enable, bool risingEdge) |
| 1659 | { |
| 1660 | if (enable) { |
| 1661 | /* enable the feature, update the edge polarity first to ensure |
| 1662 | it is correct before the feature is enabled. */ |
| 1663 | ConfigSetParameter(CanTalonSRX::eQuadIdxPolarity,risingEdge ? 1 : 0); |
| 1664 | ConfigSetParameter(CanTalonSRX::eClearPositionOnIdx,1); |
| 1665 | } else { |
| 1666 | /* disable the feature first, then update the edge polarity. */ |
| 1667 | ConfigSetParameter(CanTalonSRX::eClearPositionOnIdx,0); |
| 1668 | ConfigSetParameter(CanTalonSRX::eQuadIdxPolarity,risingEdge ? 1 : 0); |
| 1669 | } |
| 1670 | } |
| 1671 | /** |
| 1672 | * Common interface for inverting direction of a speed controller. |
| 1673 | * Only works in PercentVbus, speed, and Voltage modes. |
| 1674 | * @param isInverted The state of inversion, true is inverted. |
| 1675 | */ |
| 1676 | void CANTalon::SetInverted(bool isInverted) { m_isInverted = isInverted; } |
| 1677 | |
| 1678 | /** |
| 1679 | * Common interface for the inverting direction of a speed controller. |
| 1680 | * |
| 1681 | * @return isInverted The state of inversion, true is inverted. |
| 1682 | * |
| 1683 | */ |
| 1684 | bool CANTalon::GetInverted() const { return m_isInverted; } |
| 1685 | |
| 1686 | /** |
| 1687 | * Common interface for stopping the motor |
| 1688 | * Part of the MotorSafety interface |
| 1689 | * |
| 1690 | * @deprecated Call Disable instead. |
| 1691 | */ |
| 1692 | void CANTalon::StopMotor() { Disable(); } |
| 1693 | |
| 1694 | void CANTalon::ValueChanged(ITable* source, llvm::StringRef key, |
| 1695 | std::shared_ptr<nt::Value> value, bool isNew) { |
| 1696 | if(key == "Mode" && value->IsDouble()) SetControlMode(static_cast<CANSpeedController::ControlMode>(value->GetDouble())); |
| 1697 | if(key == "p" && value->IsDouble()) SetP(value->GetDouble()); |
| 1698 | if(key == "i" && value->IsDouble()) SetI(value->GetDouble()); |
| 1699 | if(key == "d" && value->IsDouble()) SetD(value->GetDouble()); |
| 1700 | if(key == "f" && value->IsDouble()) SetF(value->GetDouble()); |
| 1701 | if(key == "Enabled" && value->IsBoolean()) { |
| 1702 | if (value->GetBoolean()) { |
| 1703 | Enable(); |
| 1704 | } else { |
| 1705 | Disable(); |
| 1706 | } |
| 1707 | } |
| 1708 | if(key == "Value" && value->IsDouble()) Set(value->GetDouble()); |
| 1709 | } |
| 1710 | |
| 1711 | bool CANTalon::IsModePID(CANSpeedController::ControlMode mode) const { |
| 1712 | return mode == kCurrent || mode == kSpeed || mode == kPosition; |
| 1713 | } |
| 1714 | |
| 1715 | void CANTalon::UpdateTable() { |
| 1716 | if (m_table != nullptr) { |
| 1717 | m_table->PutString("~TYPE~", "CANSpeedController"); |
| 1718 | m_table->PutString("Type", "CANTalon"); |
| 1719 | m_table->PutString("Mode", GetModeName(m_controlMode)); |
| 1720 | m_table->PutNumber("p", GetP()); |
| 1721 | m_table->PutNumber("i", GetI()); |
| 1722 | m_table->PutNumber("d", GetD()); |
| 1723 | m_table->PutNumber("f", GetF()); |
| 1724 | m_table->PutBoolean("Enabled", IsControlEnabled()); |
| 1725 | m_table->PutNumber("Value", Get()); |
| 1726 | } |
| 1727 | } |
| 1728 | |
| 1729 | void CANTalon::StartLiveWindowMode() { |
| 1730 | if (m_table != nullptr) { |
| 1731 | m_table->AddTableListener(this, true); |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | void CANTalon::StopLiveWindowMode() { |
| 1736 | if (m_table != nullptr) { |
| 1737 | m_table->RemoveTableListener(this); |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | std::string CANTalon::GetSmartDashboardType() const { |
| 1742 | return "CANSpeedController"; |
| 1743 | } |
| 1744 | |
| 1745 | void CANTalon::InitTable(std::shared_ptr<ITable> subTable) { |
| 1746 | m_table = subTable; |
| 1747 | UpdateTable(); |
| 1748 | } |
| 1749 | |
| 1750 | std::shared_ptr<ITable> CANTalon::GetTable() const { return m_table; } |