Austin Schuh | 208337d | 2022-01-01 14:29:11 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include "hardware/resets.h" |
| 8 | #include "hardware/clocks.h" |
| 9 | #include "hardware/spi.h" |
| 10 | |
| 11 | static inline void spi_reset(spi_inst_t *spi) { |
| 12 | invalid_params_if(SPI, spi != spi0 && spi != spi1); |
| 13 | reset_block(spi == spi0 ? RESETS_RESET_SPI0_BITS : RESETS_RESET_SPI1_BITS); |
| 14 | } |
| 15 | |
| 16 | static inline void spi_unreset(spi_inst_t *spi) { |
| 17 | invalid_params_if(SPI, spi != spi0 && spi != spi1); |
| 18 | unreset_block_wait(spi == spi0 ? RESETS_RESET_SPI0_BITS : RESETS_RESET_SPI1_BITS); |
| 19 | } |
| 20 | |
| 21 | uint spi_init(spi_inst_t *spi, uint baudrate) { |
| 22 | spi_reset(spi); |
| 23 | spi_unreset(spi); |
| 24 | |
| 25 | uint baud = spi_set_baudrate(spi, baudrate); |
| 26 | spi_set_format(spi, 8, SPI_CPOL_0, SPI_CPHA_0, SPI_MSB_FIRST); |
| 27 | // Always enable DREQ signals -- harmless if DMA is not listening |
| 28 | hw_set_bits(&spi_get_hw(spi)->dmacr, SPI_SSPDMACR_TXDMAE_BITS | SPI_SSPDMACR_RXDMAE_BITS); |
| 29 | |
| 30 | // Finally enable the SPI |
| 31 | hw_set_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_SSE_BITS); |
| 32 | return baud; |
| 33 | } |
| 34 | |
| 35 | void spi_deinit(spi_inst_t *spi) { |
| 36 | hw_clear_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_SSE_BITS); |
| 37 | hw_clear_bits(&spi_get_hw(spi)->dmacr, SPI_SSPDMACR_TXDMAE_BITS | SPI_SSPDMACR_RXDMAE_BITS); |
| 38 | spi_reset(spi); |
| 39 | } |
| 40 | |
| 41 | uint spi_set_baudrate(spi_inst_t *spi, uint baudrate) { |
| 42 | uint freq_in = clock_get_hz(clk_peri); |
| 43 | uint prescale, postdiv; |
| 44 | invalid_params_if(SPI, baudrate > freq_in); |
| 45 | |
| 46 | // Find smallest prescale value which puts output frequency in range of |
| 47 | // post-divide. Prescale is an even number from 2 to 254 inclusive. |
| 48 | for (prescale = 2; prescale <= 254; prescale += 2) { |
| 49 | if (freq_in < (prescale + 2) * 256 * (uint64_t) baudrate) |
| 50 | break; |
| 51 | } |
| 52 | invalid_params_if(SPI, prescale > 254); // Frequency too low |
| 53 | |
| 54 | // Find largest post-divide which makes output <= baudrate. Post-divide is |
| 55 | // an integer in the range 1 to 256 inclusive. |
| 56 | for (postdiv = 256; postdiv > 1; --postdiv) { |
| 57 | if (freq_in / (prescale * (postdiv - 1)) > baudrate) |
| 58 | break; |
| 59 | } |
| 60 | |
| 61 | spi_get_hw(spi)->cpsr = prescale; |
| 62 | hw_write_masked(&spi_get_hw(spi)->cr0, (postdiv - 1) << SPI_SSPCR0_SCR_LSB, SPI_SSPCR0_SCR_BITS); |
| 63 | |
| 64 | // Return the frequency we were able to achieve |
| 65 | return freq_in / (prescale * postdiv); |
| 66 | } |
| 67 | |
| 68 | uint spi_get_baudrate(const spi_inst_t *spi) { |
| 69 | uint prescale = spi_get_const_hw(spi)->cpsr; |
| 70 | uint postdiv = ((spi_get_const_hw(spi)->cr0 & SPI_SSPCR0_SCR_BITS) >> SPI_SSPCR0_SCR_LSB) + 1; |
| 71 | return clock_get_hz(clk_peri) / (prescale * postdiv); |
| 72 | } |
| 73 | |
| 74 | // Write len bytes from src to SPI. Simultaneously read len bytes from SPI to dst. |
| 75 | // Note this function is guaranteed to exit in a known amount of time (bits sent * time per bit) |
| 76 | int __not_in_flash_func(spi_write_read_blocking)(spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len) { |
| 77 | invalid_params_if(SPI, 0 > (int)len); |
| 78 | |
| 79 | // Never have more transfers in flight than will fit into the RX FIFO, |
| 80 | // else FIFO will overflow if this code is heavily interrupted. |
| 81 | const size_t fifo_depth = 8; |
| 82 | size_t rx_remaining = len, tx_remaining = len; |
| 83 | |
| 84 | while (rx_remaining || tx_remaining) { |
| 85 | if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) { |
| 86 | spi_get_hw(spi)->dr = (uint32_t) *src++; |
| 87 | --tx_remaining; |
| 88 | } |
| 89 | if (rx_remaining && spi_is_readable(spi)) { |
| 90 | *dst++ = (uint8_t) spi_get_hw(spi)->dr; |
| 91 | --rx_remaining; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | return (int)len; |
| 96 | } |
| 97 | |
| 98 | // Write len bytes directly from src to the SPI, and discard any data received back |
| 99 | int __not_in_flash_func(spi_write_blocking)(spi_inst_t *spi, const uint8_t *src, size_t len) { |
| 100 | invalid_params_if(SPI, 0 > (int)len); |
| 101 | // Write to TX FIFO whilst ignoring RX, then clean up afterward. When RX |
| 102 | // is full, PL022 inhibits RX pushes, and sets a sticky flag on |
| 103 | // push-on-full, but continues shifting. Safe if SSPIMSC_RORIM is not set. |
| 104 | for (size_t i = 0; i < len; ++i) { |
| 105 | while (!spi_is_writable(spi)) |
| 106 | tight_loop_contents(); |
| 107 | spi_get_hw(spi)->dr = (uint32_t)src[i]; |
| 108 | } |
| 109 | // Drain RX FIFO, then wait for shifting to finish (which may be *after* |
| 110 | // TX FIFO drains), then drain RX FIFO again |
| 111 | while (spi_is_readable(spi)) |
| 112 | (void)spi_get_hw(spi)->dr; |
| 113 | while (spi_get_hw(spi)->sr & SPI_SSPSR_BSY_BITS) |
| 114 | tight_loop_contents(); |
| 115 | while (spi_is_readable(spi)) |
| 116 | (void)spi_get_hw(spi)->dr; |
| 117 | |
| 118 | // Don't leave overrun flag set |
| 119 | spi_get_hw(spi)->icr = SPI_SSPICR_RORIC_BITS; |
| 120 | |
| 121 | return (int)len; |
| 122 | } |
| 123 | |
| 124 | // Read len bytes directly from the SPI to dst. |
| 125 | // repeated_tx_data is output repeatedly on SO as data is read in from SI. |
| 126 | // Generally this can be 0, but some devices require a specific value here, |
| 127 | // e.g. SD cards expect 0xff |
| 128 | int __not_in_flash_func(spi_read_blocking)(spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len) { |
| 129 | invalid_params_if(SPI, 0 > (int)len); |
| 130 | const size_t fifo_depth = 8; |
| 131 | size_t rx_remaining = len, tx_remaining = len; |
| 132 | |
| 133 | while (rx_remaining || tx_remaining) { |
| 134 | if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) { |
| 135 | spi_get_hw(spi)->dr = (uint32_t) repeated_tx_data; |
| 136 | --tx_remaining; |
| 137 | } |
| 138 | if (rx_remaining && spi_is_readable(spi)) { |
| 139 | *dst++ = (uint8_t) spi_get_hw(spi)->dr; |
| 140 | --rx_remaining; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | return (int)len; |
| 145 | } |
| 146 | |
| 147 | // Write len halfwords from src to SPI. Simultaneously read len halfwords from SPI to dst. |
| 148 | int __not_in_flash_func(spi_write16_read16_blocking)(spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len) { |
| 149 | invalid_params_if(SPI, 0 > (int)len); |
| 150 | // Never have more transfers in flight than will fit into the RX FIFO, |
| 151 | // else FIFO will overflow if this code is heavily interrupted. |
| 152 | const size_t fifo_depth = 8; |
| 153 | size_t rx_remaining = len, tx_remaining = len; |
| 154 | |
| 155 | while (rx_remaining || tx_remaining) { |
| 156 | if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) { |
| 157 | spi_get_hw(spi)->dr = (uint32_t) *src++; |
| 158 | --tx_remaining; |
| 159 | } |
| 160 | if (rx_remaining && spi_is_readable(spi)) { |
| 161 | *dst++ = (uint16_t) spi_get_hw(spi)->dr; |
| 162 | --rx_remaining; |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | return (int)len; |
| 167 | } |
| 168 | |
| 169 | // Write len bytes directly from src to the SPI, and discard any data received back |
| 170 | int __not_in_flash_func(spi_write16_blocking)(spi_inst_t *spi, const uint16_t *src, size_t len) { |
| 171 | invalid_params_if(SPI, 0 > (int)len); |
| 172 | // Deliberately overflow FIFO, then clean up afterward, to minimise amount |
| 173 | // of APB polling required per halfword |
| 174 | for (size_t i = 0; i < len; ++i) { |
| 175 | while (!spi_is_writable(spi)) |
| 176 | tight_loop_contents(); |
| 177 | spi_get_hw(spi)->dr = (uint32_t)src[i]; |
| 178 | } |
| 179 | |
| 180 | while (spi_is_readable(spi)) |
| 181 | (void)spi_get_hw(spi)->dr; |
| 182 | while (spi_get_hw(spi)->sr & SPI_SSPSR_BSY_BITS) |
| 183 | tight_loop_contents(); |
| 184 | while (spi_is_readable(spi)) |
| 185 | (void)spi_get_hw(spi)->dr; |
| 186 | |
| 187 | // Don't leave overrun flag set |
| 188 | spi_get_hw(spi)->icr = SPI_SSPICR_RORIC_BITS; |
| 189 | |
| 190 | return (int)len; |
| 191 | } |
| 192 | |
| 193 | // Read len halfwords directly from the SPI to dst. |
| 194 | // repeated_tx_data is output repeatedly on SO as data is read in from SI. |
| 195 | int __not_in_flash_func(spi_read16_blocking)(spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t len) { |
| 196 | invalid_params_if(SPI, 0 > (int)len); |
| 197 | const size_t fifo_depth = 8; |
| 198 | size_t rx_remaining = len, tx_remaining = len; |
| 199 | |
| 200 | while (rx_remaining || tx_remaining) { |
| 201 | if (tx_remaining && spi_is_writable(spi) && rx_remaining < tx_remaining + fifo_depth) { |
| 202 | spi_get_hw(spi)->dr = (uint32_t) repeated_tx_data; |
| 203 | --tx_remaining; |
| 204 | } |
| 205 | if (rx_remaining && spi_is_readable(spi)) { |
| 206 | *dst++ = (uint16_t) spi_get_hw(spi)->dr; |
| 207 | --rx_remaining; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | return (int)len; |
| 212 | } |