blob: f51331aacdf62012099ab5ab57cdb34d05fd8937 [file] [log] [blame]
Austin Schuh208337d2022-01-01 14:29:11 -08001/*
2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include "pico.h"
8#include "hardware/regs/clocks.h"
9#include "hardware/platform_defs.h"
10#include "hardware/clocks.h"
11#include "hardware/watchdog.h"
12#include "hardware/pll.h"
13#include "hardware/xosc.h"
14#include "hardware/irq.h"
15#include "hardware/gpio.h"
16
17check_hw_layout(clocks_hw_t, clk[clk_adc].selected, CLOCKS_CLK_ADC_SELECTED_OFFSET);
18check_hw_layout(clocks_hw_t, fc0.result, CLOCKS_FC0_RESULT_OFFSET);
19check_hw_layout(clocks_hw_t, ints, CLOCKS_INTS_OFFSET);
20
21static uint32_t configured_freq[CLK_COUNT];
22
23static resus_callback_t _resus_callback;
24
25// Clock muxing consists of two components:
26// - A glitchless mux, which can be switched freely, but whose inputs must be
27// free-running
28// - An auxiliary (glitchy) mux, whose output glitches when switched, but has
29// no constraints on its inputs
30// Not all clocks have both types of mux.
31static inline bool has_glitchless_mux(enum clock_index clk_index) {
32 return clk_index == clk_sys || clk_index == clk_ref;
33}
34
35void clock_stop(enum clock_index clk_index) {
36 clock_hw_t *clock = &clocks_hw->clk[clk_index];
37 hw_clear_bits(&clock->ctrl, CLOCKS_CLK_USB_CTRL_ENABLE_BITS);
38 configured_freq[clk_index] = 0;
39}
40
41/// \tag::clock_configure[]
42bool clock_configure(enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq) {
43 uint32_t div;
44
45 assert(src_freq >= freq);
46
47 if (freq > src_freq)
48 return false;
49
50 // Div register is 24.8 int.frac divider so multiply by 2^8 (left shift by 8)
51 div = (uint32_t) (((uint64_t) src_freq << 8) / freq);
52
53 clock_hw_t *clock = &clocks_hw->clk[clk_index];
54
55 // If increasing divisor, set divisor before source. Otherwise set source
56 // before divisor. This avoids a momentary overspeed when e.g. switching
57 // to a faster source and increasing divisor to compensate.
58 if (div > clock->div)
59 clock->div = div;
60
61 // If switching a glitchless slice (ref or sys) to an aux source, switch
62 // away from aux *first* to avoid passing glitches when changing aux mux.
63 // Assume (!!!) glitchless source 0 is no faster than the aux source.
64 if (has_glitchless_mux(clk_index) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {
65 hw_clear_bits(&clock->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
66 while (!(clock->selected & 1u))
67 tight_loop_contents();
68 }
69 // If no glitchless mux, cleanly stop the clock to avoid glitches
70 // propagating when changing aux mux. Note it would be a really bad idea
71 // to do this on one of the glitchless clocks (clk_sys, clk_ref).
72 else {
73 // Disable clock. On clk_ref and clk_sys this does nothing,
74 // all other clocks have the ENABLE bit in the same position.
75 hw_clear_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
76 if (configured_freq[clk_index] > 0) {
77 // Delay for 3 cycles of the target clock, for ENABLE propagation.
78 // Note XOSC_COUNT is not helpful here because XOSC is not
79 // necessarily running, nor is timer... so, 3 cycles per loop:
80 uint delay_cyc = configured_freq[clk_sys] / configured_freq[clk_index] + 1;
81 asm volatile (
82 ".syntax unified \n\t"
83 "1: \n\t"
84 "subs %0, #1 \n\t"
85 "bne 1b"
86 : "+r" (delay_cyc)
87 );
88 }
89 }
90
91 // Set aux mux first, and then glitchless mux if this clock has one
92 hw_write_masked(&clock->ctrl,
93 (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
94 CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS
95 );
96
97 if (has_glitchless_mux(clk_index)) {
98 hw_write_masked(&clock->ctrl,
99 src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
100 CLOCKS_CLK_REF_CTRL_SRC_BITS
101 );
102 while (!(clock->selected & (1u << src)))
103 tight_loop_contents();
104 }
105
106 // Enable clock. On clk_ref and clk_sys this does nothing,
107 // all other clocks have the ENABLE bit in the same position.
108 hw_set_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
109
110 // Now that the source is configured, we can trust that the user-supplied
111 // divisor is a safe value.
112 clock->div = div;
113
114 // Store the configured frequency
115 configured_freq[clk_index] = (uint32_t)(((uint64_t) src_freq << 8) / div);
116
117 return true;
118}
119/// \end::clock_configure[]
120
121void clocks_init(void) {
122 // Start tick in watchdog
123 watchdog_start_tick(XOSC_MHZ);
124
125 // Everything is 48MHz on FPGA apart from RTC. Otherwise set to 0 and will be set in clock configure
126 if (running_on_fpga()) {
127 for (uint i = 0; i < CLK_COUNT; i++) {
128 configured_freq[i] = 48 * MHZ;
129 }
130 configured_freq[clk_rtc] = 46875;
131 return;
132 }
133
134 // Disable resus that may be enabled from previous software
135 clocks_hw->resus.ctrl = 0;
136
137 // Enable the xosc
138 xosc_init();
139
140 // Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
141 hw_clear_bits(&clocks_hw->clk[clk_sys].ctrl, CLOCKS_CLK_SYS_CTRL_SRC_BITS);
142 while (clocks_hw->clk[clk_sys].selected != 0x1)
143 tight_loop_contents();
144 hw_clear_bits(&clocks_hw->clk[clk_ref].ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
145 while (clocks_hw->clk[clk_ref].selected != 0x1)
146 tight_loop_contents();
147
148 /// \tag::pll_settings[]
149 // Configure PLLs
150 // REF FBDIV VCO POSTDIV
151 // PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHZ / 6 / 2 = 125MHz
152 // PLL USB: 12 / 1 = 12MHz * 40 = 480 MHz / 5 / 2 = 48MHz
153 /// \end::pll_settings[]
154
155 /// \tag::pll_init[]
156 pll_init(pll_sys, 1, 1500 * MHZ, 6, 2);
157 pll_init(pll_usb, 1, 480 * MHZ, 5, 2);
158 /// \end::pll_init[]
159
160 // Configure clocks
161 // CLK_REF = XOSC (12MHz) / 1 = 12MHz
162 clock_configure(clk_ref,
163 CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC,
164 0, // No aux mux
165 12 * MHZ,
166 12 * MHZ);
167
168 /// \tag::configure_clk_sys[]
169 // CLK SYS = PLL SYS (125MHz) / 1 = 125MHz
170 clock_configure(clk_sys,
171 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
172 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
173 125 * MHZ,
174 125 * MHZ);
175 /// \end::configure_clk_sys[]
176
177 // CLK USB = PLL USB (48MHz) / 1 = 48MHz
178 clock_configure(clk_usb,
179 0, // No GLMUX
180 CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
181 48 * MHZ,
182 48 * MHZ);
183
184 // CLK ADC = PLL USB (48MHZ) / 1 = 48MHz
185 clock_configure(clk_adc,
186 0, // No GLMUX
187 CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
188 48 * MHZ,
189 48 * MHZ);
190
191 // CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz
192 clock_configure(clk_rtc,
193 0, // No GLMUX
194 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
195 48 * MHZ,
196 46875);
197
198 // CLK PERI = clk_sys. Used as reference clock for Peripherals. No dividers so just select and enable
199 // Normally choose clk_sys or clk_usb
200 clock_configure(clk_peri,
201 0,
202 CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,
203 125 * MHZ,
204 125 * MHZ);
205}
206
207/// \tag::clock_get_hz[]
208uint32_t clock_get_hz(enum clock_index clk_index) {
209 return configured_freq[clk_index];
210}
211/// \end::clock_get_hz[]
212
213void clock_set_reported_hz(enum clock_index clk_index, uint hz) {
214 configured_freq[clk_index] = hz;
215}
216
217/// \tag::frequency_count_khz[]
218uint32_t frequency_count_khz(uint src) {
219 fc_hw_t *fc = &clocks_hw->fc0;
220
221 // If frequency counter is running need to wait for it. It runs even if the source is NULL
222 while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) {
223 tight_loop_contents();
224 }
225
226 // Set reference freq
227 fc->ref_khz = clock_get_hz(clk_ref) / 1000;
228
229 // FIXME: Don't pick random interval. Use best interval
230 fc->interval = 10;
231
232 // No min or max
233 fc->min_khz = 0;
234 fc->max_khz = 0xffffffff;
235
236 // Set SRC which automatically starts the measurement
237 fc->src = src;
238
239 while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) {
240 tight_loop_contents();
241 }
242
243 // Return the result
244 return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB;
245}
246/// \end::frequency_count_khz[]
247
248static void clocks_handle_resus(void) {
249 // Set clk_sys back to the ref clock rather than it being forced to clk_ref
250 // by resus. Call the user's resus callback if they have set one
251
252 // CLK SYS = CLK_REF. Must be running for this code to be running
253 uint clk_ref_freq = clock_get_hz(clk_ref);
254 clock_configure(clk_sys,
255 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF,
256 0,
257 clk_ref_freq,
258 clk_ref_freq);
259
260 // Assert we have been resussed
261 assert(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS);
262
263 // Now we have fixed clk_sys we can safely remove the resus
264 hw_set_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
265 hw_clear_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS);
266
267 // Now we should no longer be resussed
268 assert(!(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS));
269
270 // Call the user's callback to notify them of the resus event
271 if (_resus_callback) {
272 _resus_callback();
273 }
274}
275
276static void clocks_irq_handler(void) {
277 // Clocks interrupt handler. Only resus but handle irq
278 // defensively just in case.
279 uint32_t ints = clocks_hw->ints;
280
281 if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) {
282 ints &= ~CLOCKS_INTE_CLK_SYS_RESUS_BITS;
283 clocks_handle_resus();
284 }
285
286#ifndef NDEBUG
287 if (ints) {
288 panic("Unexpected clocks irq\n");
289 }
290#endif
291}
292
293void clocks_enable_resus(resus_callback_t resus_callback) {
294 // Restart clk_sys if it is stopped by forcing it
295 // to the default source of clk_ref. If clk_ref stops running this will
296 // not work.
297
298 // Store user's resus callback
299 _resus_callback = resus_callback;
300
301 irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler);
302
303 // Enable the resus interrupt in clocks
304 clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS;
305
306 // Enable the clocks irq
307 irq_set_enabled(CLOCKS_IRQ, true);
308
309 // 2 * clk_ref freq / clk_sys_min_freq;
310 // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz
311 uint timeout = 2 * 3 * 1;
312
313 // Enable resus with the maximum timeout
314 clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout;
315}
316
317void clock_gpio_init(uint gpio, uint src, uint div) {
318 // Bit messy but it's as much code to loop through a lookup
319 // table. The sources for each gpout generators are the same
320 // so just call with the sources from GP0
321 uint gpclk = 0;
322 if (gpio == 21) gpclk = clk_gpout0;
323 else if (gpio == 23) gpclk = clk_gpout1;
324 else if (gpio == 24) gpclk = clk_gpout2;
325 else if (gpio == 25) gpclk = clk_gpout3;
326 else {
327 invalid_params_if(CLOCKS, true);
328 }
329
330 // Set up the gpclk generator
331 clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) |
332 CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS;
333 clocks_hw->clk[gpclk].div = div << CLOCKS_CLK_GPOUT0_DIV_INT_LSB;
334
335 // Set gpio pin to gpclock function
336 gpio_set_function(gpio, GPIO_FUNC_GPCK);
337}
338
339static const uint8_t gpin0_src[CLK_COUNT] = {
340 CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT0
341 CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT1
342 CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT2
343 CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT3
344 CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_REF
345 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_SYS
346 CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_PERI
347 CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_USB
348 CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_ADC
349 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_RTC
350};
351
352// Assert GPIN1 is GPIN0 + 1
353static_assert(CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
354static_assert(CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
355static_assert(CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
356static_assert(CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
357static_assert(CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
358static_assert(CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
359static_assert(CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
360static_assert(CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
361static_assert(CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
362static_assert(CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch");
363
364bool clock_configure_gpin(enum clock_index clk_index, uint gpio, uint32_t src_freq, uint32_t freq) {
365 // Configure a clock to run from a GPIO input
366 uint gpin = 0;
367 if (gpio == 20) gpin = 0;
368 else if (gpio == 22) gpin = 1;
369 else {
370 invalid_params_if(CLOCKS, true);
371 }
372
373 // Work out sources. GPIN is always an auxsrc
374 uint src = 0;
375
376 // GPIN1 == GPIN0 + 1
377 uint auxsrc = gpin0_src[clk_index] + gpin;
378
379 if (has_glitchless_mux(clk_index)) {
380 // AUX src is always 1
381 src = 1;
382 }
383
384 // Set the GPIO function
385 gpio_set_function(gpio, GPIO_FUNC_GPCK);
386
387 // Now we have the src, auxsrc, and configured the gpio input
388 // call clock configure to run the clock from a gpio
389 return clock_configure(clk_index, src, auxsrc, src_freq, freq);
390}