Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2017 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 31 | #include "ceres/subset_preconditioner.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 32 | |
| 33 | #include <memory> |
| 34 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 35 | #include "Eigen/Dense" |
| 36 | #include "Eigen/SparseCore" |
| 37 | #include "ceres/block_sparse_matrix.h" |
| 38 | #include "ceres/compressed_row_sparse_matrix.h" |
| 39 | #include "ceres/inner_product_computer.h" |
| 40 | #include "ceres/internal/eigen.h" |
| 41 | #include "glog/logging.h" |
| 42 | #include "gtest/gtest.h" |
| 43 | |
| 44 | namespace ceres { |
| 45 | namespace internal { |
| 46 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 47 | namespace { |
| 48 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 49 | // TODO(sameeragarwal): Refactor the following two functions out of |
| 50 | // here and sparse_cholesky_test.cc into a more suitable place. |
| 51 | template <int UpLoType> |
| 52 | bool SolveLinearSystemUsingEigen(const Matrix& lhs, |
| 53 | const Vector rhs, |
| 54 | Vector* solution) { |
| 55 | Eigen::LLT<Matrix, UpLoType> llt = lhs.selfadjointView<UpLoType>().llt(); |
| 56 | if (llt.info() != Eigen::Success) { |
| 57 | return false; |
| 58 | } |
| 59 | *solution = llt.solve(rhs); |
| 60 | return (llt.info() == Eigen::Success); |
| 61 | } |
| 62 | |
| 63 | // Use Eigen's Dense Cholesky solver to compute the solution to a |
| 64 | // sparse linear system. |
| 65 | bool ComputeExpectedSolution(const CompressedRowSparseMatrix& lhs, |
| 66 | const Vector& rhs, |
| 67 | Vector* solution) { |
| 68 | Matrix dense_triangular_lhs; |
| 69 | lhs.ToDenseMatrix(&dense_triangular_lhs); |
| 70 | if (lhs.storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) { |
| 71 | Matrix full_lhs = dense_triangular_lhs.selfadjointView<Eigen::Upper>(); |
| 72 | return SolveLinearSystemUsingEigen<Eigen::Upper>(full_lhs, rhs, solution); |
| 73 | } |
| 74 | return SolveLinearSystemUsingEigen<Eigen::Lower>( |
| 75 | dense_triangular_lhs, rhs, solution); |
| 76 | } |
| 77 | |
| 78 | typedef ::testing::tuple<SparseLinearAlgebraLibraryType, bool> Param; |
| 79 | |
| 80 | std::string ParamInfoToString(testing::TestParamInfo<Param> info) { |
| 81 | Param param = info.param; |
| 82 | std::stringstream ss; |
| 83 | ss << SparseLinearAlgebraLibraryTypeToString(::testing::get<0>(param)) << "_" |
| 84 | << (::testing::get<1>(param) ? "Diagonal" : "NoDiagonal"); |
| 85 | return ss.str(); |
| 86 | } |
| 87 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 88 | } // namespace |
| 89 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 90 | class SubsetPreconditionerTest : public ::testing::TestWithParam<Param> { |
| 91 | protected: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 92 | void SetUp() final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 93 | BlockSparseMatrix::RandomMatrixOptions options; |
| 94 | options.num_col_blocks = 4; |
| 95 | options.min_col_block_size = 1; |
| 96 | options.max_col_block_size = 4; |
| 97 | options.num_row_blocks = 8; |
| 98 | options.min_row_block_size = 1; |
| 99 | options.max_row_block_size = 4; |
| 100 | options.block_density = 0.9; |
| 101 | |
| 102 | m_.reset(BlockSparseMatrix::CreateRandomMatrix(options)); |
| 103 | start_row_block_ = m_->block_structure()->rows.size(); |
| 104 | |
| 105 | // Ensure that the bottom part of the matrix has the same column |
| 106 | // block structure. |
| 107 | options.col_blocks = m_->block_structure()->cols; |
| 108 | b_.reset(BlockSparseMatrix::CreateRandomMatrix(options)); |
| 109 | m_->AppendRows(*b_); |
| 110 | |
| 111 | // Create a Identity block diagonal matrix with the same column |
| 112 | // block structure. |
| 113 | diagonal_ = Vector::Ones(m_->num_cols()); |
| 114 | block_diagonal_.reset(BlockSparseMatrix::CreateDiagonalMatrix( |
| 115 | diagonal_.data(), b_->block_structure()->cols)); |
| 116 | |
| 117 | // Unconditionally add the block diagonal to the matrix b_, |
| 118 | // because either it is either part of b_ to make it full rank, or |
| 119 | // we pass the same diagonal matrix later as the parameter D. In |
| 120 | // either case the preconditioner matrix is b_' b + D'D. |
| 121 | b_->AppendRows(*block_diagonal_); |
| 122 | inner_product_computer_.reset(InnerProductComputer::Create( |
| 123 | *b_, CompressedRowSparseMatrix::UPPER_TRIANGULAR)); |
| 124 | inner_product_computer_->Compute(); |
| 125 | } |
| 126 | |
| 127 | std::unique_ptr<BlockSparseMatrix> m_; |
| 128 | std::unique_ptr<BlockSparseMatrix> b_; |
| 129 | std::unique_ptr<BlockSparseMatrix> block_diagonal_; |
| 130 | std::unique_ptr<InnerProductComputer> inner_product_computer_; |
| 131 | std::unique_ptr<Preconditioner> preconditioner_; |
| 132 | Vector diagonal_; |
| 133 | int start_row_block_; |
| 134 | }; |
| 135 | |
| 136 | TEST_P(SubsetPreconditionerTest, foo) { |
| 137 | Param param = GetParam(); |
| 138 | Preconditioner::Options options; |
| 139 | options.subset_preconditioner_start_row_block = start_row_block_; |
| 140 | options.sparse_linear_algebra_library_type = ::testing::get<0>(param); |
| 141 | preconditioner_.reset(new SubsetPreconditioner(options, *m_)); |
| 142 | |
| 143 | const bool with_diagonal = ::testing::get<1>(param); |
| 144 | if (!with_diagonal) { |
| 145 | m_->AppendRows(*block_diagonal_); |
| 146 | } |
| 147 | |
| 148 | EXPECT_TRUE( |
| 149 | preconditioner_->Update(*m_, with_diagonal ? diagonal_.data() : NULL)); |
| 150 | |
| 151 | // Repeatedly apply the preconditioner to random vectors and check |
| 152 | // that the preconditioned value is the same as one obtained by |
| 153 | // solving the linear system directly. |
| 154 | for (int i = 0; i < 5; ++i) { |
| 155 | CompressedRowSparseMatrix* lhs = inner_product_computer_->mutable_result(); |
| 156 | Vector rhs = Vector::Random(lhs->num_rows()); |
| 157 | Vector expected(lhs->num_rows()); |
| 158 | EXPECT_TRUE(ComputeExpectedSolution(*lhs, rhs, &expected)); |
| 159 | |
| 160 | Vector actual(lhs->num_rows()); |
| 161 | preconditioner_->RightMultiply(rhs.data(), actual.data()); |
| 162 | |
| 163 | Matrix eigen_lhs; |
| 164 | lhs->ToDenseMatrix(&eigen_lhs); |
| 165 | EXPECT_NEAR((actual - expected).norm() / actual.norm(), |
| 166 | 0.0, |
| 167 | std::numeric_limits<double>::epsilon() * 10) |
| 168 | << "\n" |
| 169 | << eigen_lhs << "\n" |
| 170 | << expected.transpose() << "\n" |
| 171 | << actual.transpose(); |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | #ifndef CERES_NO_SUITESPARSE |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 176 | INSTANTIATE_TEST_SUITE_P(SubsetPreconditionerWithSuiteSparse, |
| 177 | SubsetPreconditionerTest, |
| 178 | ::testing::Combine(::testing::Values(SUITE_SPARSE), |
| 179 | ::testing::Values(true, false)), |
| 180 | ParamInfoToString); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 181 | #endif |
| 182 | |
| 183 | #ifndef CERES_NO_CXSPARSE |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 184 | INSTANTIATE_TEST_SUITE_P(SubsetPreconditionerWithCXSparse, |
| 185 | SubsetPreconditionerTest, |
| 186 | ::testing::Combine(::testing::Values(CX_SPARSE), |
| 187 | ::testing::Values(true, false)), |
| 188 | ParamInfoToString); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 189 | #endif |
| 190 | |
| 191 | #ifndef CERES_NO_ACCELERATE_SPARSE |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 192 | INSTANTIATE_TEST_SUITE_P( |
| 193 | SubsetPreconditionerWithAccelerateSparse, |
| 194 | SubsetPreconditionerTest, |
| 195 | ::testing::Combine(::testing::Values(ACCELERATE_SPARSE), |
| 196 | ::testing::Values(true, false)), |
| 197 | ParamInfoToString); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 198 | #endif |
| 199 | |
| 200 | #ifdef CERES_USE_EIGEN_SPARSE |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 201 | INSTANTIATE_TEST_SUITE_P(SubsetPreconditionerWithEigenSparse, |
| 202 | SubsetPreconditionerTest, |
| 203 | ::testing::Combine(::testing::Values(EIGEN_SPARSE), |
| 204 | ::testing::Values(true, false)), |
| 205 | ParamInfoToString); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 206 | #endif |
| 207 | |
| 208 | } // namespace internal |
| 209 | } // namespace ceres |