blob: 4b587bff7f439812417847f3118696b53016c839 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2018 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Authors: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "Eigen/Dense"
32#include "benchmark/benchmark.h"
33#include "ceres/small_blas.h"
34
35namespace ceres {
36
37// Benchmarking matrix-vector multiply routines and optimizing memory
38// access requires that we make sure that they are not just sitting in
39// the cache. So, as the benchmarking routine iterates, we need to
40// multiply new/different matrice and vectors. Allocating/creating
41// these objects in the benchmarking loop is too heavy duty, so we
42// create them before hand and cycle through them in the
43// benchmark. This class, given the size of the matrix creates such
44// matrix and vector objects for use in the benchmark.
45class MatrixVectorMultiplyData {
46 public:
47 MatrixVectorMultiplyData(int rows, int cols)
48 : num_elements_(1000),
49 rows_(rows),
50 cols_(cols),
51 a_(num_elements_ * rows, 1.001),
52 b_(num_elements_ * rows * cols, 1.5),
53 c_(num_elements_ * cols, 1.00003) {}
54
55 int num_elements() const { return num_elements_; }
56 double* GetA(int i) { return &a_[i * rows_]; }
57 double* GetB(int i) { return &b_[i * rows_ * cols_]; }
58 double* GetC(int i) { return &c_[i * cols_]; }
59
60 private:
61 const int num_elements_;
62 const int rows_;
63 const int cols_;
64 std::vector<double> a_;
65 std::vector<double> b_;
66 std::vector<double> c_;
67};
68
69// Helper function to generate the various matrix sizes for which we
70// run the benchmark.
71static void MatrixSizeArguments(benchmark::internal::Benchmark* benchmark) {
72 std::vector<int> rows = {1, 2, 3, 4, 6, 8};
73 std::vector<int> cols = {1, 2, 3, 4, 8, 12, 15};
74 for (int r : rows) {
75 for (int c : cols) {
76 benchmark->Args({r, c});
77 }
78 }
79}
80
81void BM_MatrixVectorMultiply(benchmark::State& state) {
82 const int rows = state.range(0);
83 const int cols = state.range(1);
84 MatrixVectorMultiplyData data(rows, cols);
85 const int num_elements = data.num_elements();
86 int iter = 0;
87 for (auto _ : state) {
88 // A += B * C;
89 internal::MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
90 data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter));
91 iter = (iter + 1) % num_elements;
92 }
93}
94
95BENCHMARK(BM_MatrixVectorMultiply)->Apply(MatrixSizeArguments);
96
97void BM_MatrixTransposeVectorMultiply(benchmark::State& state) {
98 const int rows = state.range(0);
99 const int cols = state.range(1);
100 MatrixVectorMultiplyData data(cols, rows);
101 const int num_elements = data.num_elements();
102 int iter = 0;
103 for (auto _ : state) {
104 internal::MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
105 data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter));
106 iter = (iter + 1) % num_elements;
107 }
108}
109
110BENCHMARK(BM_MatrixTransposeVectorMultiply)->Apply(MatrixSizeArguments);
111
112} // namespace ceres
113
114BENCHMARK_MAIN();