blob: 392636e18615b6eee38e30b021955cbc3f70b852 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#ifndef CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_
32#define CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_
33
34#include "ceres/cost_function.h"
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080035#include "ceres/internal/port.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080036#include "ceres/sized_cost_function.h"
37#include "ceres/types.h"
38
39namespace ceres {
40namespace internal {
41
42// Noise factor for randomized cost function.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080043static constexpr double kNoiseFactor = 0.01;
Austin Schuh70cc9552019-01-21 19:46:48 -080044
45// Default random seed for randomized cost function.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080046static constexpr unsigned int kRandomSeed = 1234;
Austin Schuh70cc9552019-01-21 19:46:48 -080047
48// y1 = x1'x2 -> dy1/dx1 = x2, dy1/dx2 = x1
49// y2 = (x1'x2)^2 -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2)
50// y3 = x2'x2 -> dy3/dx1 = 0, dy3/dx2 = 2 * x2
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080051class CERES_EXPORT_INTERNAL EasyFunctor {
Austin Schuh70cc9552019-01-21 19:46:48 -080052 public:
53 bool operator()(const double* x1, const double* x2, double* residuals) const;
54 void ExpectCostFunctionEvaluationIsNearlyCorrect(
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080055 const CostFunction& cost_function, NumericDiffMethodType method) const;
Austin Schuh70cc9552019-01-21 19:46:48 -080056};
57
58class EasyCostFunction : public SizedCostFunction<3, 5, 5> {
59 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080060 bool Evaluate(double const* const* parameters,
61 double* residuals,
62 double** /* not used */) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -080063 return functor_(parameters[0], parameters[1], residuals);
64 }
65
66 private:
67 EasyFunctor functor_;
68};
69
70// y1 = sin(x1'x2)
71// y2 = exp(-x1'x2 / 10)
72//
73// dy1/dx1 = x2 * cos(x1'x2), dy1/dx2 = x1 * cos(x1'x2)
74// dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080075class CERES_EXPORT TranscendentalFunctor {
Austin Schuh70cc9552019-01-21 19:46:48 -080076 public:
77 bool operator()(const double* x1, const double* x2, double* residuals) const;
78 void ExpectCostFunctionEvaluationIsNearlyCorrect(
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080079 const CostFunction& cost_function, NumericDiffMethodType method) const;
Austin Schuh70cc9552019-01-21 19:46:48 -080080};
81
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080082class CERES_EXPORT_INTERNAL TranscendentalCostFunction
83 : public SizedCostFunction<2, 5, 5> {
Austin Schuh70cc9552019-01-21 19:46:48 -080084 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080085 bool Evaluate(double const* const* parameters,
86 double* residuals,
87 double** /* not used */) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -080088 return functor_(parameters[0], parameters[1], residuals);
89 }
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080090
Austin Schuh70cc9552019-01-21 19:46:48 -080091 private:
92 TranscendentalFunctor functor_;
93};
94
95// y = exp(x), dy/dx = exp(x)
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080096class CERES_EXPORT_INTERNAL ExponentialFunctor {
Austin Schuh70cc9552019-01-21 19:46:48 -080097 public:
98 bool operator()(const double* x1, double* residuals) const;
99 void ExpectCostFunctionEvaluationIsNearlyCorrect(
100 const CostFunction& cost_function) const;
101};
102
103class ExponentialCostFunction : public SizedCostFunction<1, 1> {
104 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800105 bool Evaluate(double const* const* parameters,
106 double* residuals,
107 double** /* not used */) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -0800108 return functor_(parameters[0], residuals);
109 }
110
111 private:
112 ExponentialFunctor functor_;
113};
114
115// Test adaptive numeric differentiation by synthetically adding random noise
116// to a functor.
117// y = x^2 + [random noise], dy/dx ~ 2x
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800118class CERES_EXPORT_INTERNAL RandomizedFunctor {
Austin Schuh70cc9552019-01-21 19:46:48 -0800119 public:
120 RandomizedFunctor(double noise_factor, unsigned int random_seed)
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800121 : noise_factor_(noise_factor), random_seed_(random_seed) {}
Austin Schuh70cc9552019-01-21 19:46:48 -0800122
123 bool operator()(const double* x1, double* residuals) const;
124 void ExpectCostFunctionEvaluationIsNearlyCorrect(
125 const CostFunction& cost_function) const;
126
127 private:
128 double noise_factor_;
129 unsigned int random_seed_;
130};
131
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800132class CERES_EXPORT_INTERNAL RandomizedCostFunction
133 : public SizedCostFunction<1, 1> {
Austin Schuh70cc9552019-01-21 19:46:48 -0800134 public:
135 RandomizedCostFunction(double noise_factor, unsigned int random_seed)
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800136 : functor_(noise_factor, random_seed) {}
Austin Schuh70cc9552019-01-21 19:46:48 -0800137
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800138 bool Evaluate(double const* const* parameters,
139 double* residuals,
140 double** /* not used */) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -0800141 return functor_(parameters[0], residuals);
142 }
143
144 private:
145 RandomizedFunctor functor_;
146};
147
Austin Schuh70cc9552019-01-21 19:46:48 -0800148} // namespace internal
149} // namespace ceres
150
151#endif // CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_