blob: 0028a9889230e0d5bb230ce8dfc644c46d2af5b7 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Limited memory positive definite approximation to the inverse
32// Hessian, using the LBFGS algorithm
33
34#ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
35#define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
36
37#include <list>
38
39#include "ceres/internal/eigen.h"
40#include "ceres/linear_operator.h"
41
42namespace ceres {
43namespace internal {
44
45// LowRankInverseHessian is a positive definite approximation to the
46// Hessian using the limited memory variant of the
47// Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for
48// approximating the Hessian.
49//
50// Other update rules like the Davidon-Fletcher-Powell (DFP) are
51// possible, but the BFGS rule is considered the best performing one.
52//
53// The limited memory variant was developed by Nocedal and further
54// enhanced with scaling rule by Byrd, Nocedal and Schanbel.
55//
56// Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080057// Storage". Mathematics of Computation 35 (151): 773-782.
Austin Schuh70cc9552019-01-21 19:46:48 -080058//
59// Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
60// "Representations of Quasi-Newton Matrices and their use in
61// Limited Memory Methods". Mathematical Programming 63 (4):
62class LowRankInverseHessian : public LinearOperator {
63 public:
64 // num_parameters is the row/column size of the Hessian.
65 // max_num_corrections is the rank of the Hessian approximation.
66 // use_approximate_eigenvalue_scaling controls whether the initial
67 // inverse Hessian used during Right/LeftMultiply() is scaled by
68 // the approximate eigenvalue of the true inverse Hessian at the
69 // current operating point.
70 // The approximation uses:
71 // 2 * max_num_corrections * num_parameters + max_num_corrections
72 // doubles.
73 LowRankInverseHessian(int num_parameters,
74 int max_num_corrections,
75 bool use_approximate_eigenvalue_scaling);
76 virtual ~LowRankInverseHessian() {}
77
78 // Update the low rank approximation. delta_x is the change in the
79 // domain of Hessian, and delta_gradient is the change in the
80 // gradient. The update copies the delta_x and delta_gradient
81 // vectors, and gets rid of the oldest delta_x and delta_gradient
82 // vectors if the number of corrections is already equal to
83 // max_num_corrections.
84 bool Update(const Vector& delta_x, const Vector& delta_gradient);
85
86 // LinearOperator interface
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080087 void RightMultiply(const double* x, double* y) const final;
88 void LeftMultiply(const double* x, double* y) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -080089 RightMultiply(x, y);
90 }
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080091 int num_rows() const final { return num_parameters_; }
92 int num_cols() const final { return num_parameters_; }
Austin Schuh70cc9552019-01-21 19:46:48 -080093
94 private:
95 const int num_parameters_;
96 const int max_num_corrections_;
97 const bool use_approximate_eigenvalue_scaling_;
98 double approximate_eigenvalue_scale_;
99 ColMajorMatrix delta_x_history_;
100 ColMajorMatrix delta_gradient_history_;
101 Vector delta_x_dot_delta_gradient_;
102 std::list<int> indices_;
103};
104
105} // namespace internal
106} // namespace ceres
107
108#endif // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_