Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/loss_function.h" |
| 32 | |
| 33 | #include <cstddef> |
| 34 | |
| 35 | #include "glog/logging.h" |
| 36 | #include "gtest/gtest.h" |
| 37 | |
| 38 | namespace ceres { |
| 39 | namespace internal { |
| 40 | namespace { |
| 41 | |
| 42 | // Helper function for testing a LossFunction callback. |
| 43 | // |
| 44 | // Compares the values of rho'(s) and rho''(s) computed by the |
| 45 | // callback with estimates obtained by symmetric finite differencing |
| 46 | // of rho(s). |
| 47 | void AssertLossFunctionIsValid(const LossFunction& loss, double s) { |
| 48 | CHECK_GT(s, 0); |
| 49 | |
| 50 | // Evaluate rho(s), rho'(s) and rho''(s). |
| 51 | double rho[3]; |
| 52 | loss.Evaluate(s, rho); |
| 53 | |
| 54 | // Use symmetric finite differencing to estimate rho'(s) and |
| 55 | // rho''(s). |
| 56 | const double kH = 1e-4; |
| 57 | // Values at s + kH. |
| 58 | double fwd[3]; |
| 59 | // Values at s - kH. |
| 60 | double bwd[3]; |
| 61 | loss.Evaluate(s + kH, fwd); |
| 62 | loss.Evaluate(s - kH, bwd); |
| 63 | |
| 64 | // First derivative. |
| 65 | const double fd_1 = (fwd[0] - bwd[0]) / (2 * kH); |
| 66 | ASSERT_NEAR(fd_1, rho[1], 1e-6); |
| 67 | |
| 68 | // Second derivative. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 69 | const double fd_2 = (fwd[0] - 2 * rho[0] + bwd[0]) / (kH * kH); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 70 | ASSERT_NEAR(fd_2, rho[2], 1e-6); |
| 71 | } |
| 72 | } // namespace |
| 73 | |
| 74 | // Try two values of the scaling a = 0.7 and 1.3 |
| 75 | // (where scaling makes sense) and of the squared norm |
| 76 | // s = 0.357 and 1.792 |
| 77 | // |
| 78 | // Note that for the Huber loss the test exercises both code paths |
| 79 | // (i.e. both small and large values of s). |
| 80 | |
| 81 | TEST(LossFunction, TrivialLoss) { |
| 82 | AssertLossFunctionIsValid(TrivialLoss(), 0.357); |
| 83 | AssertLossFunctionIsValid(TrivialLoss(), 1.792); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 84 | // Check that at s = 0: rho = [0, 1, 0]. |
| 85 | double rho[3]; |
| 86 | TrivialLoss().Evaluate(0.0, rho); |
| 87 | ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| 88 | ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| 89 | ASSERT_NEAR(rho[2], 0.0, 1e-6); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 90 | } |
| 91 | |
| 92 | TEST(LossFunction, HuberLoss) { |
| 93 | AssertLossFunctionIsValid(HuberLoss(0.7), 0.357); |
| 94 | AssertLossFunctionIsValid(HuberLoss(0.7), 1.792); |
| 95 | AssertLossFunctionIsValid(HuberLoss(1.3), 0.357); |
| 96 | AssertLossFunctionIsValid(HuberLoss(1.3), 1.792); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 97 | // Check that at s = 0: rho = [0, 1, 0]. |
| 98 | double rho[3]; |
| 99 | HuberLoss(0.7).Evaluate(0.0, rho); |
| 100 | ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| 101 | ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| 102 | ASSERT_NEAR(rho[2], 0.0, 1e-6); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 103 | } |
| 104 | |
| 105 | TEST(LossFunction, SoftLOneLoss) { |
| 106 | AssertLossFunctionIsValid(SoftLOneLoss(0.7), 0.357); |
| 107 | AssertLossFunctionIsValid(SoftLOneLoss(0.7), 1.792); |
| 108 | AssertLossFunctionIsValid(SoftLOneLoss(1.3), 0.357); |
| 109 | AssertLossFunctionIsValid(SoftLOneLoss(1.3), 1.792); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 110 | // Check that at s = 0: rho = [0, 1, -1 / (2 * a^2)]. |
| 111 | double rho[3]; |
| 112 | SoftLOneLoss(0.7).Evaluate(0.0, rho); |
| 113 | ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| 114 | ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| 115 | ASSERT_NEAR(rho[2], -0.5 / (0.7 * 0.7), 1e-6); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 116 | } |
| 117 | |
| 118 | TEST(LossFunction, CauchyLoss) { |
| 119 | AssertLossFunctionIsValid(CauchyLoss(0.7), 0.357); |
| 120 | AssertLossFunctionIsValid(CauchyLoss(0.7), 1.792); |
| 121 | AssertLossFunctionIsValid(CauchyLoss(1.3), 0.357); |
| 122 | AssertLossFunctionIsValid(CauchyLoss(1.3), 1.792); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 123 | // Check that at s = 0: rho = [0, 1, -1 / a^2]. |
| 124 | double rho[3]; |
| 125 | CauchyLoss(0.7).Evaluate(0.0, rho); |
| 126 | ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| 127 | ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| 128 | ASSERT_NEAR(rho[2], -1.0 / (0.7 * 0.7), 1e-6); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 129 | } |
| 130 | |
| 131 | TEST(LossFunction, ArctanLoss) { |
| 132 | AssertLossFunctionIsValid(ArctanLoss(0.7), 0.357); |
| 133 | AssertLossFunctionIsValid(ArctanLoss(0.7), 1.792); |
| 134 | AssertLossFunctionIsValid(ArctanLoss(1.3), 0.357); |
| 135 | AssertLossFunctionIsValid(ArctanLoss(1.3), 1.792); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 136 | // Check that at s = 0: rho = [0, 1, 0]. |
| 137 | double rho[3]; |
| 138 | ArctanLoss(0.7).Evaluate(0.0, rho); |
| 139 | ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| 140 | ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| 141 | ASSERT_NEAR(rho[2], 0.0, 1e-6); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 142 | } |
| 143 | |
| 144 | TEST(LossFunction, TolerantLoss) { |
| 145 | AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 0.357); |
| 146 | AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 1.792); |
| 147 | AssertLossFunctionIsValid(TolerantLoss(0.7, 0.4), 55.5); |
| 148 | AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 0.357); |
| 149 | AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 1.792); |
| 150 | AssertLossFunctionIsValid(TolerantLoss(1.3, 0.1), 55.5); |
| 151 | // Check the value at zero is actually zero. |
| 152 | double rho[3]; |
| 153 | TolerantLoss(0.7, 0.4).Evaluate(0.0, rho); |
| 154 | ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| 155 | // Check that loss before and after the approximation threshold are good. |
| 156 | // A threshold of 36.7 is used by the implementation. |
| 157 | AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.6); |
| 158 | AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.7); |
| 159 | AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 36.8); |
| 160 | AssertLossFunctionIsValid(TolerantLoss(20.0, 1.0), 20.0 + 1000.0); |
| 161 | } |
| 162 | |
| 163 | TEST(LossFunction, TukeyLoss) { |
| 164 | AssertLossFunctionIsValid(TukeyLoss(0.7), 0.357); |
| 165 | AssertLossFunctionIsValid(TukeyLoss(0.7), 1.792); |
| 166 | AssertLossFunctionIsValid(TukeyLoss(1.3), 0.357); |
| 167 | AssertLossFunctionIsValid(TukeyLoss(1.3), 1.792); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 168 | // Check that at s = 0: rho = [0, 1, -2 / a^2]. |
| 169 | double rho[3]; |
| 170 | TukeyLoss(0.7).Evaluate(0.0, rho); |
| 171 | ASSERT_NEAR(rho[0], 0.0, 1e-6); |
| 172 | ASSERT_NEAR(rho[1], 1.0, 1e-6); |
| 173 | ASSERT_NEAR(rho[2], -2.0 / (0.7 * 0.7), 1e-6); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 174 | } |
| 175 | |
| 176 | TEST(LossFunction, ComposedLoss) { |
| 177 | { |
| 178 | HuberLoss f(0.7); |
| 179 | CauchyLoss g(1.3); |
| 180 | ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP); |
| 181 | AssertLossFunctionIsValid(c, 0.357); |
| 182 | AssertLossFunctionIsValid(c, 1.792); |
| 183 | } |
| 184 | { |
| 185 | CauchyLoss f(0.7); |
| 186 | HuberLoss g(1.3); |
| 187 | ComposedLoss c(&f, DO_NOT_TAKE_OWNERSHIP, &g, DO_NOT_TAKE_OWNERSHIP); |
| 188 | AssertLossFunctionIsValid(c, 0.357); |
| 189 | AssertLossFunctionIsValid(c, 1.792); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | TEST(LossFunction, ScaledLoss) { |
| 194 | // Wrap a few loss functions, and a few scale factors. This can't combine |
| 195 | // construction with the call to AssertLossFunctionIsValid() because Apple's |
| 196 | // GCC is unable to eliminate the copy of ScaledLoss, which is not copyable. |
| 197 | { |
| 198 | ScaledLoss scaled_loss(NULL, 6, TAKE_OWNERSHIP); |
| 199 | AssertLossFunctionIsValid(scaled_loss, 0.323); |
| 200 | } |
| 201 | { |
| 202 | ScaledLoss scaled_loss(new TrivialLoss(), 10, TAKE_OWNERSHIP); |
| 203 | AssertLossFunctionIsValid(scaled_loss, 0.357); |
| 204 | } |
| 205 | { |
| 206 | ScaledLoss scaled_loss(new HuberLoss(0.7), 0.1, TAKE_OWNERSHIP); |
| 207 | AssertLossFunctionIsValid(scaled_loss, 1.792); |
| 208 | } |
| 209 | { |
| 210 | ScaledLoss scaled_loss(new SoftLOneLoss(1.3), 0.1, TAKE_OWNERSHIP); |
| 211 | AssertLossFunctionIsValid(scaled_loss, 1.792); |
| 212 | } |
| 213 | { |
| 214 | ScaledLoss scaled_loss(new CauchyLoss(1.3), 10, TAKE_OWNERSHIP); |
| 215 | AssertLossFunctionIsValid(scaled_loss, 1.792); |
| 216 | } |
| 217 | { |
| 218 | ScaledLoss scaled_loss(new ArctanLoss(1.3), 10, TAKE_OWNERSHIP); |
| 219 | AssertLossFunctionIsValid(scaled_loss, 1.792); |
| 220 | } |
| 221 | { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 222 | ScaledLoss scaled_loss(new TolerantLoss(1.3, 0.1), 10, TAKE_OWNERSHIP); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 223 | AssertLossFunctionIsValid(scaled_loss, 1.792); |
| 224 | } |
| 225 | { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 226 | ScaledLoss scaled_loss(new ComposedLoss(new HuberLoss(0.8), |
| 227 | TAKE_OWNERSHIP, |
| 228 | new TolerantLoss(1.3, 0.5), |
| 229 | TAKE_OWNERSHIP), |
| 230 | 10, |
| 231 | TAKE_OWNERSHIP); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 232 | AssertLossFunctionIsValid(scaled_loss, 1.792); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | TEST(LossFunction, LossFunctionWrapper) { |
| 237 | // Initialization |
| 238 | HuberLoss loss_function1(1.0); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 239 | LossFunctionWrapper loss_function_wrapper(new HuberLoss(1.0), TAKE_OWNERSHIP); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 240 | |
| 241 | double s = 0.862; |
| 242 | double rho_gold[3]; |
| 243 | double rho[3]; |
| 244 | loss_function1.Evaluate(s, rho_gold); |
| 245 | loss_function_wrapper.Evaluate(s, rho); |
| 246 | for (int i = 0; i < 3; ++i) { |
| 247 | EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| 248 | } |
| 249 | |
| 250 | // Resetting |
| 251 | HuberLoss loss_function2(0.5); |
| 252 | loss_function_wrapper.Reset(new HuberLoss(0.5), TAKE_OWNERSHIP); |
| 253 | loss_function_wrapper.Evaluate(s, rho); |
| 254 | loss_function2.Evaluate(s, rho_gold); |
| 255 | for (int i = 0; i < 3; ++i) { |
| 256 | EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| 257 | } |
| 258 | |
| 259 | // Not taking ownership. |
| 260 | HuberLoss loss_function3(0.3); |
| 261 | loss_function_wrapper.Reset(&loss_function3, DO_NOT_TAKE_OWNERSHIP); |
| 262 | loss_function_wrapper.Evaluate(s, rho); |
| 263 | loss_function3.Evaluate(s, rho_gold); |
| 264 | for (int i = 0; i < 3; ++i) { |
| 265 | EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| 266 | } |
| 267 | |
| 268 | // Set to NULL |
| 269 | TrivialLoss loss_function4; |
| 270 | loss_function_wrapper.Reset(NULL, TAKE_OWNERSHIP); |
| 271 | loss_function_wrapper.Evaluate(s, rho); |
| 272 | loss_function4.Evaluate(s, rho_gold); |
| 273 | for (int i = 0; i < 3; ++i) { |
| 274 | EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| 275 | } |
| 276 | |
| 277 | // Set to NULL, not taking ownership |
| 278 | loss_function_wrapper.Reset(NULL, DO_NOT_TAKE_OWNERSHIP); |
| 279 | loss_function_wrapper.Evaluate(s, rho); |
| 280 | loss_function4.Evaluate(s, rho_gold); |
| 281 | for (int i = 0; i < 3; ++i) { |
| 282 | EXPECT_NEAR(rho[i], rho_gold[i], 1e-12); |
| 283 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 284 | } |
| 285 | |
| 286 | } // namespace internal |
| 287 | } // namespace ceres |