Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/linear_least_squares_problems.h" |
| 32 | |
| 33 | #include <cstdio> |
| 34 | #include <memory> |
| 35 | #include <string> |
| 36 | #include <vector> |
| 37 | |
| 38 | #include "ceres/block_sparse_matrix.h" |
| 39 | #include "ceres/block_structure.h" |
| 40 | #include "ceres/casts.h" |
| 41 | #include "ceres/file.h" |
| 42 | #include "ceres/stringprintf.h" |
| 43 | #include "ceres/triplet_sparse_matrix.h" |
| 44 | #include "ceres/types.h" |
| 45 | #include "glog/logging.h" |
| 46 | |
| 47 | namespace ceres { |
| 48 | namespace internal { |
| 49 | |
| 50 | using std::string; |
| 51 | |
| 52 | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromId(int id) { |
| 53 | switch (id) { |
| 54 | case 0: |
| 55 | return LinearLeastSquaresProblem0(); |
| 56 | case 1: |
| 57 | return LinearLeastSquaresProblem1(); |
| 58 | case 2: |
| 59 | return LinearLeastSquaresProblem2(); |
| 60 | case 3: |
| 61 | return LinearLeastSquaresProblem3(); |
| 62 | case 4: |
| 63 | return LinearLeastSquaresProblem4(); |
| 64 | default: |
| 65 | LOG(FATAL) << "Unknown problem id requested " << id; |
| 66 | } |
| 67 | return NULL; |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | A = [1 2] |
| 72 | [3 4] |
| 73 | [6 -10] |
| 74 | |
| 75 | b = [ 8 |
| 76 | 18 |
| 77 | -18] |
| 78 | |
| 79 | x = [2 |
| 80 | 3] |
| 81 | |
| 82 | D = [1 |
| 83 | 2] |
| 84 | |
| 85 | x_D = [1.78448275; |
| 86 | 2.82327586;] |
| 87 | */ |
| 88 | LinearLeastSquaresProblem* LinearLeastSquaresProblem0() { |
| 89 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 90 | |
| 91 | TripletSparseMatrix* A = new TripletSparseMatrix(3, 2, 6); |
| 92 | problem->b.reset(new double[3]); |
| 93 | problem->D.reset(new double[2]); |
| 94 | |
| 95 | problem->x.reset(new double[2]); |
| 96 | problem->x_D.reset(new double[2]); |
| 97 | |
| 98 | int* Ai = A->mutable_rows(); |
| 99 | int* Aj = A->mutable_cols(); |
| 100 | double* Ax = A->mutable_values(); |
| 101 | |
| 102 | int counter = 0; |
| 103 | for (int i = 0; i < 3; ++i) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 104 | for (int j = 0; j < 2; ++j) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 105 | Ai[counter] = i; |
| 106 | Aj[counter] = j; |
| 107 | ++counter; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | Ax[0] = 1.; |
| 112 | Ax[1] = 2.; |
| 113 | Ax[2] = 3.; |
| 114 | Ax[3] = 4.; |
| 115 | Ax[4] = 6; |
| 116 | Ax[5] = -10; |
| 117 | A->set_num_nonzeros(6); |
| 118 | problem->A.reset(A); |
| 119 | |
| 120 | problem->b[0] = 8; |
| 121 | problem->b[1] = 18; |
| 122 | problem->b[2] = -18; |
| 123 | |
| 124 | problem->x[0] = 2.0; |
| 125 | problem->x[1] = 3.0; |
| 126 | |
| 127 | problem->D[0] = 1; |
| 128 | problem->D[1] = 2; |
| 129 | |
| 130 | problem->x_D[0] = 1.78448275; |
| 131 | problem->x_D[1] = 2.82327586; |
| 132 | return problem; |
| 133 | } |
| 134 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 135 | /* |
| 136 | A = [1 0 | 2 0 0 |
| 137 | 3 0 | 0 4 0 |
| 138 | 0 5 | 0 0 6 |
| 139 | 0 7 | 8 0 0 |
| 140 | 0 9 | 1 0 0 |
| 141 | 0 0 | 1 1 1] |
| 142 | |
| 143 | b = [0 |
| 144 | 1 |
| 145 | 2 |
| 146 | 3 |
| 147 | 4 |
| 148 | 5] |
| 149 | |
| 150 | c = A'* b = [ 3 |
| 151 | 67 |
| 152 | 33 |
| 153 | 9 |
| 154 | 17] |
| 155 | |
| 156 | A'A = [10 0 2 12 0 |
| 157 | 0 155 65 0 30 |
| 158 | 2 65 70 1 1 |
| 159 | 12 0 1 17 1 |
| 160 | 0 30 1 1 37] |
| 161 | |
| 162 | S = [ 42.3419 -1.4000 -11.5806 |
| 163 | -1.4000 2.6000 1.0000 |
| 164 | 11.5806 1.0000 31.1935] |
| 165 | |
| 166 | r = [ 4.3032 |
| 167 | 5.4000 |
| 168 | 5.0323] |
| 169 | |
| 170 | S\r = [ 0.2102 |
| 171 | 2.1367 |
| 172 | 0.1388] |
| 173 | |
| 174 | A\b = [-2.3061 |
| 175 | 0.3172 |
| 176 | 0.2102 |
| 177 | 2.1367 |
| 178 | 0.1388] |
| 179 | */ |
| 180 | // The following two functions create a TripletSparseMatrix and a |
| 181 | // BlockSparseMatrix version of this problem. |
| 182 | |
| 183 | // TripletSparseMatrix version. |
| 184 | LinearLeastSquaresProblem* LinearLeastSquaresProblem1() { |
| 185 | int num_rows = 6; |
| 186 | int num_cols = 5; |
| 187 | |
| 188 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 189 | TripletSparseMatrix* A = |
| 190 | new TripletSparseMatrix(num_rows, num_cols, num_rows * num_cols); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 191 | problem->b.reset(new double[num_rows]); |
| 192 | problem->D.reset(new double[num_cols]); |
| 193 | problem->num_eliminate_blocks = 2; |
| 194 | |
| 195 | int* rows = A->mutable_rows(); |
| 196 | int* cols = A->mutable_cols(); |
| 197 | double* values = A->mutable_values(); |
| 198 | |
| 199 | int nnz = 0; |
| 200 | |
| 201 | // Row 1 |
| 202 | { |
| 203 | rows[nnz] = 0; |
| 204 | cols[nnz] = 0; |
| 205 | values[nnz++] = 1; |
| 206 | |
| 207 | rows[nnz] = 0; |
| 208 | cols[nnz] = 2; |
| 209 | values[nnz++] = 2; |
| 210 | } |
| 211 | |
| 212 | // Row 2 |
| 213 | { |
| 214 | rows[nnz] = 1; |
| 215 | cols[nnz] = 0; |
| 216 | values[nnz++] = 3; |
| 217 | |
| 218 | rows[nnz] = 1; |
| 219 | cols[nnz] = 3; |
| 220 | values[nnz++] = 4; |
| 221 | } |
| 222 | |
| 223 | // Row 3 |
| 224 | { |
| 225 | rows[nnz] = 2; |
| 226 | cols[nnz] = 1; |
| 227 | values[nnz++] = 5; |
| 228 | |
| 229 | rows[nnz] = 2; |
| 230 | cols[nnz] = 4; |
| 231 | values[nnz++] = 6; |
| 232 | } |
| 233 | |
| 234 | // Row 4 |
| 235 | { |
| 236 | rows[nnz] = 3; |
| 237 | cols[nnz] = 1; |
| 238 | values[nnz++] = 7; |
| 239 | |
| 240 | rows[nnz] = 3; |
| 241 | cols[nnz] = 2; |
| 242 | values[nnz++] = 8; |
| 243 | } |
| 244 | |
| 245 | // Row 5 |
| 246 | { |
| 247 | rows[nnz] = 4; |
| 248 | cols[nnz] = 1; |
| 249 | values[nnz++] = 9; |
| 250 | |
| 251 | rows[nnz] = 4; |
| 252 | cols[nnz] = 2; |
| 253 | values[nnz++] = 1; |
| 254 | } |
| 255 | |
| 256 | // Row 6 |
| 257 | { |
| 258 | rows[nnz] = 5; |
| 259 | cols[nnz] = 2; |
| 260 | values[nnz++] = 1; |
| 261 | |
| 262 | rows[nnz] = 5; |
| 263 | cols[nnz] = 3; |
| 264 | values[nnz++] = 1; |
| 265 | |
| 266 | rows[nnz] = 5; |
| 267 | cols[nnz] = 4; |
| 268 | values[nnz++] = 1; |
| 269 | } |
| 270 | |
| 271 | A->set_num_nonzeros(nnz); |
| 272 | CHECK(A->IsValid()); |
| 273 | |
| 274 | problem->A.reset(A); |
| 275 | |
| 276 | for (int i = 0; i < num_cols; ++i) { |
| 277 | problem->D.get()[i] = 1; |
| 278 | } |
| 279 | |
| 280 | for (int i = 0; i < num_rows; ++i) { |
| 281 | problem->b.get()[i] = i; |
| 282 | } |
| 283 | |
| 284 | return problem; |
| 285 | } |
| 286 | |
| 287 | // BlockSparseMatrix version |
| 288 | LinearLeastSquaresProblem* LinearLeastSquaresProblem2() { |
| 289 | int num_rows = 6; |
| 290 | int num_cols = 5; |
| 291 | |
| 292 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 293 | |
| 294 | problem->b.reset(new double[num_rows]); |
| 295 | problem->D.reset(new double[num_cols]); |
| 296 | problem->num_eliminate_blocks = 2; |
| 297 | |
| 298 | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| 299 | std::unique_ptr<double[]> values(new double[num_rows * num_cols]); |
| 300 | |
| 301 | for (int c = 0; c < num_cols; ++c) { |
| 302 | bs->cols.push_back(Block()); |
| 303 | bs->cols.back().size = 1; |
| 304 | bs->cols.back().position = c; |
| 305 | } |
| 306 | |
| 307 | int nnz = 0; |
| 308 | |
| 309 | // Row 1 |
| 310 | { |
| 311 | values[nnz++] = 1; |
| 312 | values[nnz++] = 2; |
| 313 | |
| 314 | bs->rows.push_back(CompressedRow()); |
| 315 | CompressedRow& row = bs->rows.back(); |
| 316 | row.block.size = 1; |
| 317 | row.block.position = 0; |
| 318 | row.cells.push_back(Cell(0, 0)); |
| 319 | row.cells.push_back(Cell(2, 1)); |
| 320 | } |
| 321 | |
| 322 | // Row 2 |
| 323 | { |
| 324 | values[nnz++] = 3; |
| 325 | values[nnz++] = 4; |
| 326 | |
| 327 | bs->rows.push_back(CompressedRow()); |
| 328 | CompressedRow& row = bs->rows.back(); |
| 329 | row.block.size = 1; |
| 330 | row.block.position = 1; |
| 331 | row.cells.push_back(Cell(0, 2)); |
| 332 | row.cells.push_back(Cell(3, 3)); |
| 333 | } |
| 334 | |
| 335 | // Row 3 |
| 336 | { |
| 337 | values[nnz++] = 5; |
| 338 | values[nnz++] = 6; |
| 339 | |
| 340 | bs->rows.push_back(CompressedRow()); |
| 341 | CompressedRow& row = bs->rows.back(); |
| 342 | row.block.size = 1; |
| 343 | row.block.position = 2; |
| 344 | row.cells.push_back(Cell(1, 4)); |
| 345 | row.cells.push_back(Cell(4, 5)); |
| 346 | } |
| 347 | |
| 348 | // Row 4 |
| 349 | { |
| 350 | values[nnz++] = 7; |
| 351 | values[nnz++] = 8; |
| 352 | |
| 353 | bs->rows.push_back(CompressedRow()); |
| 354 | CompressedRow& row = bs->rows.back(); |
| 355 | row.block.size = 1; |
| 356 | row.block.position = 3; |
| 357 | row.cells.push_back(Cell(1, 6)); |
| 358 | row.cells.push_back(Cell(2, 7)); |
| 359 | } |
| 360 | |
| 361 | // Row 5 |
| 362 | { |
| 363 | values[nnz++] = 9; |
| 364 | values[nnz++] = 1; |
| 365 | |
| 366 | bs->rows.push_back(CompressedRow()); |
| 367 | CompressedRow& row = bs->rows.back(); |
| 368 | row.block.size = 1; |
| 369 | row.block.position = 4; |
| 370 | row.cells.push_back(Cell(1, 8)); |
| 371 | row.cells.push_back(Cell(2, 9)); |
| 372 | } |
| 373 | |
| 374 | // Row 6 |
| 375 | { |
| 376 | values[nnz++] = 1; |
| 377 | values[nnz++] = 1; |
| 378 | values[nnz++] = 1; |
| 379 | |
| 380 | bs->rows.push_back(CompressedRow()); |
| 381 | CompressedRow& row = bs->rows.back(); |
| 382 | row.block.size = 1; |
| 383 | row.block.position = 5; |
| 384 | row.cells.push_back(Cell(2, 10)); |
| 385 | row.cells.push_back(Cell(3, 11)); |
| 386 | row.cells.push_back(Cell(4, 12)); |
| 387 | } |
| 388 | |
| 389 | BlockSparseMatrix* A = new BlockSparseMatrix(bs); |
| 390 | memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); |
| 391 | |
| 392 | for (int i = 0; i < num_cols; ++i) { |
| 393 | problem->D.get()[i] = 1; |
| 394 | } |
| 395 | |
| 396 | for (int i = 0; i < num_rows; ++i) { |
| 397 | problem->b.get()[i] = i; |
| 398 | } |
| 399 | |
| 400 | problem->A.reset(A); |
| 401 | |
| 402 | return problem; |
| 403 | } |
| 404 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 405 | /* |
| 406 | A = [1 0 |
| 407 | 3 0 |
| 408 | 0 5 |
| 409 | 0 7 |
| 410 | 0 9 |
| 411 | 0 0] |
| 412 | |
| 413 | b = [0 |
| 414 | 1 |
| 415 | 2 |
| 416 | 3 |
| 417 | 4 |
| 418 | 5] |
| 419 | */ |
| 420 | // BlockSparseMatrix version |
| 421 | LinearLeastSquaresProblem* LinearLeastSquaresProblem3() { |
| 422 | int num_rows = 5; |
| 423 | int num_cols = 2; |
| 424 | |
| 425 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 426 | |
| 427 | problem->b.reset(new double[num_rows]); |
| 428 | problem->D.reset(new double[num_cols]); |
| 429 | problem->num_eliminate_blocks = 2; |
| 430 | |
| 431 | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| 432 | std::unique_ptr<double[]> values(new double[num_rows * num_cols]); |
| 433 | |
| 434 | for (int c = 0; c < num_cols; ++c) { |
| 435 | bs->cols.push_back(Block()); |
| 436 | bs->cols.back().size = 1; |
| 437 | bs->cols.back().position = c; |
| 438 | } |
| 439 | |
| 440 | int nnz = 0; |
| 441 | |
| 442 | // Row 1 |
| 443 | { |
| 444 | values[nnz++] = 1; |
| 445 | bs->rows.push_back(CompressedRow()); |
| 446 | CompressedRow& row = bs->rows.back(); |
| 447 | row.block.size = 1; |
| 448 | row.block.position = 0; |
| 449 | row.cells.push_back(Cell(0, 0)); |
| 450 | } |
| 451 | |
| 452 | // Row 2 |
| 453 | { |
| 454 | values[nnz++] = 3; |
| 455 | bs->rows.push_back(CompressedRow()); |
| 456 | CompressedRow& row = bs->rows.back(); |
| 457 | row.block.size = 1; |
| 458 | row.block.position = 1; |
| 459 | row.cells.push_back(Cell(0, 1)); |
| 460 | } |
| 461 | |
| 462 | // Row 3 |
| 463 | { |
| 464 | values[nnz++] = 5; |
| 465 | bs->rows.push_back(CompressedRow()); |
| 466 | CompressedRow& row = bs->rows.back(); |
| 467 | row.block.size = 1; |
| 468 | row.block.position = 2; |
| 469 | row.cells.push_back(Cell(1, 2)); |
| 470 | } |
| 471 | |
| 472 | // Row 4 |
| 473 | { |
| 474 | values[nnz++] = 7; |
| 475 | bs->rows.push_back(CompressedRow()); |
| 476 | CompressedRow& row = bs->rows.back(); |
| 477 | row.block.size = 1; |
| 478 | row.block.position = 3; |
| 479 | row.cells.push_back(Cell(1, 3)); |
| 480 | } |
| 481 | |
| 482 | // Row 5 |
| 483 | { |
| 484 | values[nnz++] = 9; |
| 485 | bs->rows.push_back(CompressedRow()); |
| 486 | CompressedRow& row = bs->rows.back(); |
| 487 | row.block.size = 1; |
| 488 | row.block.position = 4; |
| 489 | row.cells.push_back(Cell(1, 4)); |
| 490 | } |
| 491 | |
| 492 | BlockSparseMatrix* A = new BlockSparseMatrix(bs); |
| 493 | memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); |
| 494 | |
| 495 | for (int i = 0; i < num_cols; ++i) { |
| 496 | problem->D.get()[i] = 1; |
| 497 | } |
| 498 | |
| 499 | for (int i = 0; i < num_rows; ++i) { |
| 500 | problem->b.get()[i] = i; |
| 501 | } |
| 502 | |
| 503 | problem->A.reset(A); |
| 504 | |
| 505 | return problem; |
| 506 | } |
| 507 | |
| 508 | /* |
| 509 | A = [1 2 0 0 0 1 1 |
| 510 | 1 4 0 0 0 5 6 |
| 511 | 0 0 9 0 0 3 1] |
| 512 | |
| 513 | b = [0 |
| 514 | 1 |
| 515 | 2] |
| 516 | */ |
| 517 | // BlockSparseMatrix version |
| 518 | // |
| 519 | // This problem has the unique property that it has two different |
| 520 | // sized f-blocks, but only one of them occurs in the rows involving |
| 521 | // the one e-block. So performing Schur elimination on this problem |
| 522 | // tests the Schur Eliminator's ability to handle non-e-block rows |
| 523 | // correctly when their structure does not conform to the static |
| 524 | // structure determined by DetectStructure. |
| 525 | // |
| 526 | // NOTE: This problem is too small and rank deficient to be solved without |
| 527 | // the diagonal regularization. |
| 528 | LinearLeastSquaresProblem* LinearLeastSquaresProblem4() { |
| 529 | int num_rows = 3; |
| 530 | int num_cols = 7; |
| 531 | |
| 532 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 533 | |
| 534 | problem->b.reset(new double[num_rows]); |
| 535 | problem->D.reset(new double[num_cols]); |
| 536 | problem->num_eliminate_blocks = 1; |
| 537 | |
| 538 | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| 539 | std::unique_ptr<double[]> values(new double[num_rows * num_cols]); |
| 540 | |
| 541 | // Column block structure |
| 542 | bs->cols.push_back(Block()); |
| 543 | bs->cols.back().size = 2; |
| 544 | bs->cols.back().position = 0; |
| 545 | |
| 546 | bs->cols.push_back(Block()); |
| 547 | bs->cols.back().size = 3; |
| 548 | bs->cols.back().position = 2; |
| 549 | |
| 550 | bs->cols.push_back(Block()); |
| 551 | bs->cols.back().size = 2; |
| 552 | bs->cols.back().position = 5; |
| 553 | |
| 554 | int nnz = 0; |
| 555 | |
| 556 | // Row 1 & 2 |
| 557 | { |
| 558 | bs->rows.push_back(CompressedRow()); |
| 559 | CompressedRow& row = bs->rows.back(); |
| 560 | row.block.size = 2; |
| 561 | row.block.position = 0; |
| 562 | |
| 563 | row.cells.push_back(Cell(0, nnz)); |
| 564 | values[nnz++] = 1; |
| 565 | values[nnz++] = 2; |
| 566 | values[nnz++] = 1; |
| 567 | values[nnz++] = 4; |
| 568 | |
| 569 | row.cells.push_back(Cell(2, nnz)); |
| 570 | values[nnz++] = 1; |
| 571 | values[nnz++] = 1; |
| 572 | values[nnz++] = 5; |
| 573 | values[nnz++] = 6; |
| 574 | } |
| 575 | |
| 576 | // Row 3 |
| 577 | { |
| 578 | bs->rows.push_back(CompressedRow()); |
| 579 | CompressedRow& row = bs->rows.back(); |
| 580 | row.block.size = 1; |
| 581 | row.block.position = 2; |
| 582 | |
| 583 | row.cells.push_back(Cell(1, nnz)); |
| 584 | values[nnz++] = 9; |
| 585 | values[nnz++] = 0; |
| 586 | values[nnz++] = 0; |
| 587 | |
| 588 | row.cells.push_back(Cell(2, nnz)); |
| 589 | values[nnz++] = 3; |
| 590 | values[nnz++] = 1; |
| 591 | } |
| 592 | |
| 593 | BlockSparseMatrix* A = new BlockSparseMatrix(bs); |
| 594 | memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); |
| 595 | |
| 596 | for (int i = 0; i < num_cols; ++i) { |
| 597 | problem->D.get()[i] = (i + 1) * 100; |
| 598 | } |
| 599 | |
| 600 | for (int i = 0; i < num_rows; ++i) { |
| 601 | problem->b.get()[i] = i; |
| 602 | } |
| 603 | |
| 604 | problem->A.reset(A); |
| 605 | return problem; |
| 606 | } |
| 607 | |
| 608 | namespace { |
| 609 | bool DumpLinearLeastSquaresProblemToConsole(const SparseMatrix* A, |
| 610 | const double* D, |
| 611 | const double* b, |
| 612 | const double* x, |
| 613 | int num_eliminate_blocks) { |
| 614 | CHECK(A != nullptr); |
| 615 | Matrix AA; |
| 616 | A->ToDenseMatrix(&AA); |
| 617 | LOG(INFO) << "A^T: \n" << AA.transpose(); |
| 618 | |
| 619 | if (D != NULL) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 620 | LOG(INFO) << "A's appended diagonal:\n" << ConstVectorRef(D, A->num_cols()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 621 | } |
| 622 | |
| 623 | if (b != NULL) { |
| 624 | LOG(INFO) << "b: \n" << ConstVectorRef(b, A->num_rows()); |
| 625 | } |
| 626 | |
| 627 | if (x != NULL) { |
| 628 | LOG(INFO) << "x: \n" << ConstVectorRef(x, A->num_cols()); |
| 629 | } |
| 630 | return true; |
| 631 | } |
| 632 | |
| 633 | void WriteArrayToFileOrDie(const string& filename, |
| 634 | const double* x, |
| 635 | const int size) { |
| 636 | CHECK(x != nullptr); |
| 637 | VLOG(2) << "Writing array to: " << filename; |
| 638 | FILE* fptr = fopen(filename.c_str(), "w"); |
| 639 | CHECK(fptr != nullptr); |
| 640 | for (int i = 0; i < size; ++i) { |
| 641 | fprintf(fptr, "%17f\n", x[i]); |
| 642 | } |
| 643 | fclose(fptr); |
| 644 | } |
| 645 | |
| 646 | bool DumpLinearLeastSquaresProblemToTextFile(const string& filename_base, |
| 647 | const SparseMatrix* A, |
| 648 | const double* D, |
| 649 | const double* b, |
| 650 | const double* x, |
| 651 | int num_eliminate_blocks) { |
| 652 | CHECK(A != nullptr); |
| 653 | LOG(INFO) << "writing to: " << filename_base << "*"; |
| 654 | |
| 655 | string matlab_script; |
| 656 | StringAppendF(&matlab_script, |
| 657 | "function lsqp = load_trust_region_problem()\n"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 658 | StringAppendF(&matlab_script, "lsqp.num_rows = %d;\n", A->num_rows()); |
| 659 | StringAppendF(&matlab_script, "lsqp.num_cols = %d;\n", A->num_cols()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 660 | |
| 661 | { |
| 662 | string filename = filename_base + "_A.txt"; |
| 663 | FILE* fptr = fopen(filename.c_str(), "w"); |
| 664 | CHECK(fptr != nullptr); |
| 665 | A->ToTextFile(fptr); |
| 666 | fclose(fptr); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 667 | StringAppendF( |
| 668 | &matlab_script, "tmp = load('%s', '-ascii');\n", filename.c_str()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 669 | StringAppendF( |
| 670 | &matlab_script, |
| 671 | "lsqp.A = sparse(tmp(:, 1) + 1, tmp(:, 2) + 1, tmp(:, 3), %d, %d);\n", |
| 672 | A->num_rows(), |
| 673 | A->num_cols()); |
| 674 | } |
| 675 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 676 | if (D != NULL) { |
| 677 | string filename = filename_base + "_D.txt"; |
| 678 | WriteArrayToFileOrDie(filename, D, A->num_cols()); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 679 | StringAppendF( |
| 680 | &matlab_script, "lsqp.D = load('%s', '-ascii');\n", filename.c_str()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 681 | } |
| 682 | |
| 683 | if (b != NULL) { |
| 684 | string filename = filename_base + "_b.txt"; |
| 685 | WriteArrayToFileOrDie(filename, b, A->num_rows()); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 686 | StringAppendF( |
| 687 | &matlab_script, "lsqp.b = load('%s', '-ascii');\n", filename.c_str()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 688 | } |
| 689 | |
| 690 | if (x != NULL) { |
| 691 | string filename = filename_base + "_x.txt"; |
| 692 | WriteArrayToFileOrDie(filename, x, A->num_cols()); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 693 | StringAppendF( |
| 694 | &matlab_script, "lsqp.x = load('%s', '-ascii');\n", filename.c_str()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 695 | } |
| 696 | |
| 697 | string matlab_filename = filename_base + ".m"; |
| 698 | WriteStringToFileOrDie(matlab_script, matlab_filename); |
| 699 | return true; |
| 700 | } |
| 701 | } // namespace |
| 702 | |
| 703 | bool DumpLinearLeastSquaresProblem(const string& filename_base, |
| 704 | DumpFormatType dump_format_type, |
| 705 | const SparseMatrix* A, |
| 706 | const double* D, |
| 707 | const double* b, |
| 708 | const double* x, |
| 709 | int num_eliminate_blocks) { |
| 710 | switch (dump_format_type) { |
| 711 | case CONSOLE: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 712 | return DumpLinearLeastSquaresProblemToConsole( |
| 713 | A, D, b, x, num_eliminate_blocks); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 714 | case TEXTFILE: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 715 | return DumpLinearLeastSquaresProblemToTextFile( |
| 716 | filename_base, A, D, b, x, num_eliminate_blocks); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 717 | default: |
| 718 | LOG(FATAL) << "Unknown DumpFormatType " << dump_format_type; |
| 719 | } |
| 720 | |
| 721 | return true; |
| 722 | } |
| 723 | |
| 724 | } // namespace internal |
| 725 | } // namespace ceres |