blob: 7e871a20a53743c472e0ad617e84007e389a54ca [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/line_search.h"
32
33#include <algorithm>
34#include <cmath>
35#include <iomanip>
36#include <iostream> // NOLINT
37
38#include "ceres/evaluator.h"
39#include "ceres/function_sample.h"
40#include "ceres/internal/eigen.h"
41#include "ceres/map_util.h"
42#include "ceres/polynomial.h"
43#include "ceres/stringprintf.h"
44#include "ceres/wall_time.h"
45#include "glog/logging.h"
46
47namespace ceres {
48namespace internal {
49
50using std::map;
51using std::ostream;
52using std::string;
53using std::vector;
54
55namespace {
56// Precision used for floating point values in error message output.
57const int kErrorMessageNumericPrecision = 8;
58} // namespace
59
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080060ostream& operator<<(ostream& os, const FunctionSample& sample);
Austin Schuh70cc9552019-01-21 19:46:48 -080061
62// Convenience stream operator for pushing FunctionSamples into log messages.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080063ostream& operator<<(ostream& os, const FunctionSample& sample) {
Austin Schuh70cc9552019-01-21 19:46:48 -080064 os << sample.ToDebugString();
65 return os;
66}
67
68LineSearch::LineSearch(const LineSearch::Options& options)
69 : options_(options) {}
70
71LineSearch* LineSearch::Create(const LineSearchType line_search_type,
72 const LineSearch::Options& options,
73 string* error) {
74 LineSearch* line_search = NULL;
75 switch (line_search_type) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080076 case ceres::ARMIJO:
77 line_search = new ArmijoLineSearch(options);
78 break;
79 case ceres::WOLFE:
80 line_search = new WolfeLineSearch(options);
81 break;
82 default:
83 *error = string("Invalid line search algorithm type: ") +
84 LineSearchTypeToString(line_search_type) +
85 string(", unable to create line search.");
86 return NULL;
Austin Schuh70cc9552019-01-21 19:46:48 -080087 }
88 return line_search;
89}
90
91LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
92 : evaluator_(evaluator),
93 position_(evaluator->NumParameters()),
94 direction_(evaluator->NumEffectiveParameters()),
95 scaled_direction_(evaluator->NumEffectiveParameters()),
96 initial_evaluator_residual_time_in_seconds(0.0),
97 initial_evaluator_jacobian_time_in_seconds(0.0) {}
98
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080099void LineSearchFunction::Init(const Vector& position, const Vector& direction) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800100 position_ = position;
101 direction_ = direction;
102}
103
104void LineSearchFunction::Evaluate(const double x,
105 const bool evaluate_gradient,
106 FunctionSample* output) {
107 output->x = x;
108 output->vector_x_is_valid = false;
109 output->value_is_valid = false;
110 output->gradient_is_valid = false;
111 output->vector_gradient_is_valid = false;
112
113 scaled_direction_ = output->x * direction_;
114 output->vector_x.resize(position_.rows(), 1);
115 if (!evaluator_->Plus(position_.data(),
116 scaled_direction_.data(),
117 output->vector_x.data())) {
118 return;
119 }
120 output->vector_x_is_valid = true;
121
122 double* gradient = NULL;
123 if (evaluate_gradient) {
124 output->vector_gradient.resize(direction_.rows(), 1);
125 gradient = output->vector_gradient.data();
126 }
127 const bool eval_status = evaluator_->Evaluate(
128 output->vector_x.data(), &(output->value), NULL, gradient, NULL);
129
130 if (!eval_status || !std::isfinite(output->value)) {
131 return;
132 }
133
134 output->value_is_valid = true;
135 if (!evaluate_gradient) {
136 return;
137 }
138
139 output->gradient = direction_.dot(output->vector_gradient);
140 if (!std::isfinite(output->gradient)) {
141 return;
142 }
143
144 output->gradient_is_valid = true;
145 output->vector_gradient_is_valid = true;
146}
147
148double LineSearchFunction::DirectionInfinityNorm() const {
149 return direction_.lpNorm<Eigen::Infinity>();
150}
151
152void LineSearchFunction::ResetTimeStatistics() {
153 const map<string, CallStatistics> evaluator_statistics =
154 evaluator_->Statistics();
155
156 initial_evaluator_residual_time_in_seconds =
157 FindWithDefault(
158 evaluator_statistics, "Evaluator::Residual", CallStatistics())
159 .time;
160 initial_evaluator_jacobian_time_in_seconds =
161 FindWithDefault(
162 evaluator_statistics, "Evaluator::Jacobian", CallStatistics())
163 .time;
164}
165
166void LineSearchFunction::TimeStatistics(
167 double* cost_evaluation_time_in_seconds,
168 double* gradient_evaluation_time_in_seconds) const {
169 const map<string, CallStatistics> evaluator_time_statistics =
170 evaluator_->Statistics();
171 *cost_evaluation_time_in_seconds =
172 FindWithDefault(
173 evaluator_time_statistics, "Evaluator::Residual", CallStatistics())
174 .time -
175 initial_evaluator_residual_time_in_seconds;
176 // Strictly speaking this will slightly underestimate the time spent
177 // evaluating the gradient of the line search univariate cost function as it
178 // does not count the time spent performing the dot product with the direction
179 // vector. However, this will typically be small by comparison, and also
180 // allows direct subtraction of the timing information from the totals for
181 // the evaluator returned in the solver summary.
182 *gradient_evaluation_time_in_seconds =
183 FindWithDefault(
184 evaluator_time_statistics, "Evaluator::Jacobian", CallStatistics())
185 .time -
186 initial_evaluator_jacobian_time_in_seconds;
187}
188
189void LineSearch::Search(double step_size_estimate,
190 double initial_cost,
191 double initial_gradient,
192 Summary* summary) const {
193 const double start_time = WallTimeInSeconds();
194 CHECK(summary != nullptr);
195 *summary = LineSearch::Summary();
196
197 summary->cost_evaluation_time_in_seconds = 0.0;
198 summary->gradient_evaluation_time_in_seconds = 0.0;
199 summary->polynomial_minimization_time_in_seconds = 0.0;
200 options().function->ResetTimeStatistics();
201 this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary);
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800202 options().function->TimeStatistics(
203 &summary->cost_evaluation_time_in_seconds,
204 &summary->gradient_evaluation_time_in_seconds);
Austin Schuh70cc9552019-01-21 19:46:48 -0800205
206 summary->total_time_in_seconds = WallTimeInSeconds() - start_time;
207}
208
209// Returns step_size \in [min_step_size, max_step_size] which minimizes the
210// polynomial of degree defined by interpolation_type which interpolates all
211// of the provided samples with valid values.
212double LineSearch::InterpolatingPolynomialMinimizingStepSize(
213 const LineSearchInterpolationType& interpolation_type,
214 const FunctionSample& lowerbound,
215 const FunctionSample& previous,
216 const FunctionSample& current,
217 const double min_step_size,
218 const double max_step_size) const {
219 if (!current.value_is_valid ||
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800220 (interpolation_type == BISECTION && max_step_size <= current.x)) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800221 // Either: sample is invalid; or we are using BISECTION and contracting
222 // the step size.
223 return std::min(std::max(current.x * 0.5, min_step_size), max_step_size);
224 } else if (interpolation_type == BISECTION) {
225 CHECK_GT(max_step_size, current.x);
226 // We are expanding the search (during a Wolfe bracketing phase) using
227 // BISECTION interpolation. Using BISECTION when trying to expand is
228 // strictly speaking an oxymoron, but we define this to mean always taking
229 // the maximum step size so that the Armijo & Wolfe implementations are
230 // agnostic to the interpolation type.
231 return max_step_size;
232 }
233 // Only check if lower-bound is valid here, where it is required
234 // to avoid replicating current.value_is_valid == false
235 // behaviour in WolfeLineSearch.
236 CHECK(lowerbound.value_is_valid)
237 << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
238 << "Ceres bug: lower-bound sample for interpolation is invalid, "
239 << "please contact the developers!, interpolation_type: "
240 << LineSearchInterpolationTypeToString(interpolation_type)
241 << ", lowerbound: " << lowerbound << ", previous: " << previous
242 << ", current: " << current;
243
244 // Select step size by interpolating the function and gradient values
245 // and minimizing the corresponding polynomial.
246 vector<FunctionSample> samples;
247 samples.push_back(lowerbound);
248
249 if (interpolation_type == QUADRATIC) {
250 // Two point interpolation using function values and the
251 // gradient at the lower bound.
252 samples.push_back(FunctionSample(current.x, current.value));
253
254 if (previous.value_is_valid) {
255 // Three point interpolation, using function values and the
256 // gradient at the lower bound.
257 samples.push_back(FunctionSample(previous.x, previous.value));
258 }
259 } else if (interpolation_type == CUBIC) {
260 // Two point interpolation using the function values and the gradients.
261 samples.push_back(current);
262
263 if (previous.value_is_valid) {
264 // Three point interpolation using the function values and
265 // the gradients.
266 samples.push_back(previous);
267 }
268 } else {
269 LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
270 << LineSearchInterpolationTypeToString(interpolation_type)
271 << ", please contact the developers!";
272 }
273
274 double step_size = 0.0, unused_min_value = 0.0;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800275 MinimizeInterpolatingPolynomial(
276 samples, min_step_size, max_step_size, &step_size, &unused_min_value);
Austin Schuh70cc9552019-01-21 19:46:48 -0800277 return step_size;
278}
279
280ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
281 : LineSearch(options) {}
282
283void ArmijoLineSearch::DoSearch(const double step_size_estimate,
284 const double initial_cost,
285 const double initial_gradient,
286 Summary* summary) const {
287 CHECK_GE(step_size_estimate, 0.0);
288 CHECK_GT(options().sufficient_decrease, 0.0);
289 CHECK_LT(options().sufficient_decrease, 1.0);
290 CHECK_GT(options().max_num_iterations, 0);
291 LineSearchFunction* function = options().function;
292
293 // Note initial_cost & initial_gradient are evaluated at step_size = 0,
294 // not step_size_estimate, which is our starting guess.
295 FunctionSample initial_position(0.0, initial_cost, initial_gradient);
296 initial_position.vector_x = function->position();
297 initial_position.vector_x_is_valid = true;
298
299 const double descent_direction_max_norm = function->DirectionInfinityNorm();
300 FunctionSample previous;
301 FunctionSample current;
302
303 // As the Armijo line search algorithm always uses the initial point, for
304 // which both the function value and derivative are known, when fitting a
305 // minimizing polynomial, we can fit up to a quadratic without requiring the
306 // gradient at the current query point.
307 const bool kEvaluateGradient = options().interpolation_type == CUBIC;
308
309 ++summary->num_function_evaluations;
310 if (kEvaluateGradient) {
311 ++summary->num_gradient_evaluations;
312 }
313
314 function->Evaluate(step_size_estimate, kEvaluateGradient, &current);
315 while (!current.value_is_valid ||
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800316 current.value > (initial_cost + options().sufficient_decrease *
317 initial_gradient * current.x)) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800318 // If current.value_is_valid is false, we treat it as if the cost at that
319 // point is not large enough to satisfy the sufficient decrease condition.
320 ++summary->num_iterations;
321 if (summary->num_iterations >= options().max_num_iterations) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800322 summary->error = StringPrintf(
323 "Line search failed: Armijo failed to find a point "
324 "satisfying the sufficient decrease condition within "
325 "specified max_num_iterations: %d.",
326 options().max_num_iterations);
327 if (!options().is_silent) {
328 LOG(WARNING) << summary->error;
329 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800330 return;
331 }
332
333 const double polynomial_minimization_start_time = WallTimeInSeconds();
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800334 const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
335 options().interpolation_type,
336 initial_position,
337 previous,
338 current,
339 (options().max_step_contraction * current.x),
340 (options().min_step_contraction * current.x));
Austin Schuh70cc9552019-01-21 19:46:48 -0800341 summary->polynomial_minimization_time_in_seconds +=
342 (WallTimeInSeconds() - polynomial_minimization_start_time);
343
344 if (step_size * descent_direction_max_norm < options().min_step_size) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800345 summary->error = StringPrintf(
346 "Line search failed: step_size too small: %.5e "
347 "with descent_direction_max_norm: %.5e.",
348 step_size,
349 descent_direction_max_norm);
350 if (!options().is_silent) {
351 LOG(WARNING) << summary->error;
352 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800353 return;
354 }
355
356 previous = current;
357
358 ++summary->num_function_evaluations;
359 if (kEvaluateGradient) {
360 ++summary->num_gradient_evaluations;
361 }
362
363 function->Evaluate(step_size, kEvaluateGradient, &current);
364 }
365
366 summary->optimal_point = current;
367 summary->success = true;
368}
369
370WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
371 : LineSearch(options) {}
372
373void WolfeLineSearch::DoSearch(const double step_size_estimate,
374 const double initial_cost,
375 const double initial_gradient,
376 Summary* summary) const {
377 // All parameters should have been validated by the Solver, but as
378 // invalid values would produce crazy nonsense, hard check them here.
379 CHECK_GE(step_size_estimate, 0.0);
380 CHECK_GT(options().sufficient_decrease, 0.0);
381 CHECK_GT(options().sufficient_curvature_decrease,
382 options().sufficient_decrease);
383 CHECK_LT(options().sufficient_curvature_decrease, 1.0);
384 CHECK_GT(options().max_step_expansion, 1.0);
385
386 // Note initial_cost & initial_gradient are evaluated at step_size = 0,
387 // not step_size_estimate, which is our starting guess.
388 FunctionSample initial_position(0.0, initial_cost, initial_gradient);
389 initial_position.vector_x = options().function->position();
390 initial_position.vector_x_is_valid = true;
391 bool do_zoom_search = false;
392 // Important: The high/low in bracket_high & bracket_low refer to their
393 // _function_ values, not their step sizes i.e. it is _not_ required that
394 // bracket_low.x < bracket_high.x.
395 FunctionSample solution, bracket_low, bracket_high;
396
397 // Wolfe bracketing phase: Increases step_size until either it finds a point
398 // that satisfies the (strong) Wolfe conditions, or an interval that brackets
399 // step sizes which satisfy the conditions. From Nocedal & Wright [1] p61 the
400 // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
401 // the strong Wolfe conditions if one of the following conditions are met:
402 //
403 // 1. step_size_{k} violates the sufficient decrease (Armijo) condition.
404 // 2. f(step_size_{k}) >= f(step_size_{k-1}).
405 // 3. f'(step_size_{k}) >= 0.
406 //
407 // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
408 // this special case, step_size monotonically increases during bracketing.
409 if (!this->BracketingPhase(initial_position,
410 step_size_estimate,
411 &bracket_low,
412 &bracket_high,
413 &do_zoom_search,
414 summary)) {
415 // Failed to find either a valid point, a valid bracket satisfying the Wolfe
416 // conditions, or even a step size > minimum tolerance satisfying the Armijo
417 // condition.
418 return;
419 }
420
421 if (!do_zoom_search) {
422 // Either: Bracketing phase already found a point satisfying the strong
423 // Wolfe conditions, thus no Zoom required.
424 //
425 // Or: Bracketing failed to find a valid bracket or a point satisfying the
426 // strong Wolfe conditions within max_num_iterations, or whilst searching
427 // shrank the bracket width until it was below our minimum tolerance.
428 // As these are 'artificial' constraints, and we would otherwise fail to
429 // produce a valid point when ArmijoLineSearch would succeed, we return the
430 // point with the lowest cost found thus far which satsifies the Armijo
431 // condition (but not the Wolfe conditions).
432 summary->optimal_point = bracket_low;
433 summary->success = true;
434 return;
435 }
436
437 VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800438 << "Starting line search zoom phase with bracket_low: " << bracket_low
439 << ", bracket_high: " << bracket_high
Austin Schuh70cc9552019-01-21 19:46:48 -0800440 << ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
441 << ", bracket abs delta cost: "
442 << fabs(bracket_low.value - bracket_high.value);
443
444 // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
445 // non-zero, finite width that should bracket step sizes which satisfy the
446 // (strong) Wolfe conditions (before finding a step size that satisfies the
447 // conditions). Zoom successively decreases the size of the interval until a
448 // step size which satisfies the Wolfe conditions is found. The interval is
449 // defined by bracket_low & bracket_high, which satisfy:
450 //
451 // 1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
452 // contains step sizes that satsify the strong Wolfe conditions.
453 // 2. bracket_low.x is of all the step sizes evaluated *which satisifed the
454 // Armijo sufficient decrease condition*, the one which generated the
455 // smallest function value, i.e. bracket_low.value <
456 // f(all other steps satisfying Armijo).
457 // - Note that this does _not_ (necessarily) mean that initially
458 // bracket_low.value < bracket_high.value (although this is typical)
459 // e.g. when bracket_low = initial_position, and bracket_high is the
460 // first sample, and which does not satisfy the Armijo condition,
461 // but still has bracket_high.value < initial_position.value.
462 // 3. bracket_high is chosen after bracket_low, s.t.
463 // bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800464 if (!this->ZoomPhase(
465 initial_position, bracket_low, bracket_high, &solution, summary) &&
466 !solution.value_is_valid) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800467 // Failed to find a valid point (given the specified decrease parameters)
468 // within the specified bracket.
469 return;
470 }
471 // Ensure that if we ran out of iterations whilst zooming the bracket, or
472 // shrank the bracket width to < tolerance and failed to find a point which
473 // satisfies the strong Wolfe curvature condition, that we return the point
474 // amongst those found thus far, which minimizes f() and satisfies the Armijo
475 // condition.
476
477 if (!solution.value_is_valid || solution.value > bracket_low.value) {
478 summary->optimal_point = bracket_low;
479 } else {
480 summary->optimal_point = solution;
481 }
482
483 summary->success = true;
484}
485
486// Returns true if either:
487//
488// A termination condition satisfying the (strong) Wolfe bracketing conditions
489// is found:
490//
491// - A valid point, defined as a bracket of zero width [zoom not required].
492// - A valid bracket (of width > tolerance), [zoom required].
493//
494// Or, searching was stopped due to an 'artificial' constraint, i.e. not
495// a condition imposed / required by the underlying algorithm, but instead an
496// engineering / implementation consideration. But a step which exceeds the
497// minimum step size, and satsifies the Armijo condition was still found,
498// and should thus be used [zoom not required].
499//
500// Returns false if no step size > minimum step size was found which
501// satisfies at least the Armijo condition.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800502bool WolfeLineSearch::BracketingPhase(const FunctionSample& initial_position,
503 const double step_size_estimate,
504 FunctionSample* bracket_low,
505 FunctionSample* bracket_high,
506 bool* do_zoom_search,
507 Summary* summary) const {
Austin Schuh70cc9552019-01-21 19:46:48 -0800508 LineSearchFunction* function = options().function;
509
510 FunctionSample previous = initial_position;
511 FunctionSample current;
512
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800513 const double descent_direction_max_norm = function->DirectionInfinityNorm();
Austin Schuh70cc9552019-01-21 19:46:48 -0800514
515 *do_zoom_search = false;
516 *bracket_low = initial_position;
517
518 // As we require the gradient to evaluate the Wolfe condition, we always
519 // calculate it together with the value, irrespective of the interpolation
520 // type. As opposed to only calculating the gradient after the Armijo
521 // condition is satisifed, as the computational saving from this approach
522 // would be slight (perhaps even negative due to the extra call). Also,
523 // always calculating the value & gradient together protects against us
524 // reporting invalid solutions if the cost function returns slightly different
525 // function values when evaluated with / without gradients (due to numerical
526 // issues).
527 ++summary->num_function_evaluations;
528 ++summary->num_gradient_evaluations;
529 const bool kEvaluateGradient = true;
530 function->Evaluate(step_size_estimate, kEvaluateGradient, &current);
531 while (true) {
532 ++summary->num_iterations;
533
534 if (current.value_is_valid &&
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800535 (current.value > (initial_position.value +
536 options().sufficient_decrease *
537 initial_position.gradient * current.x) ||
Austin Schuh70cc9552019-01-21 19:46:48 -0800538 (previous.value_is_valid && current.value > previous.value))) {
539 // Bracket found: current step size violates Armijo sufficient decrease
540 // condition, or has stepped past an inflection point of f() relative to
541 // previous step size.
542 *do_zoom_search = true;
543 *bracket_low = previous;
544 *bracket_high = current;
545 VLOG(3) << std::scientific
546 << std::setprecision(kErrorMessageNumericPrecision)
547 << "Bracket found: current step (" << current.x
548 << ") violates Armijo sufficient condition, or has passed an "
549 << "inflection point of f() based on value.";
550 break;
551 }
552
553 if (current.value_is_valid &&
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800554 fabs(current.gradient) <= -options().sufficient_curvature_decrease *
555 initial_position.gradient) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800556 // Current step size satisfies the strong Wolfe conditions, and is thus a
557 // valid termination point, therefore a Zoom not required.
558 *bracket_low = current;
559 *bracket_high = current;
560 VLOG(3) << std::scientific
561 << std::setprecision(kErrorMessageNumericPrecision)
562 << "Bracketing phase found step size: " << current.x
563 << ", satisfying strong Wolfe conditions, initial_position: "
564 << initial_position << ", current: " << current;
565 break;
566
567 } else if (current.value_is_valid && current.gradient >= 0) {
568 // Bracket found: current step size has stepped past an inflection point
569 // of f(), but Armijo sufficient decrease is still satisfied and
570 // f(current) is our best minimum thus far. Remember step size
571 // monotonically increases, thus previous_step_size < current_step_size
572 // even though f(previous) > f(current).
573 *do_zoom_search = true;
574 // Note inverse ordering from first bracket case.
575 *bracket_low = current;
576 *bracket_high = previous;
577 VLOG(3) << "Bracket found: current step (" << current.x
578 << ") satisfies Armijo, but has gradient >= 0, thus have passed "
579 << "an inflection point of f().";
580 break;
581
582 } else if (current.value_is_valid &&
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800583 fabs(current.x - previous.x) * descent_direction_max_norm <
584 options().min_step_size) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800585 // We have shrunk the search bracket to a width less than our tolerance,
586 // and still not found either a point satisfying the strong Wolfe
587 // conditions, or a valid bracket containing such a point. Stop searching
588 // and set bracket_low to the size size amongst all those tested which
589 // minimizes f() and satisfies the Armijo condition.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800590
591 if (!options().is_silent) {
592 LOG(WARNING) << "Line search failed: Wolfe bracketing phase shrank "
593 << "bracket width: " << fabs(current.x - previous.x)
594 << ", to < tolerance: " << options().min_step_size
595 << ", with descent_direction_max_norm: "
596 << descent_direction_max_norm << ", and failed to find "
597 << "a point satisfying the strong Wolfe conditions or a "
598 << "bracketing containing such a point. Accepting "
599 << "point found satisfying Armijo condition only, to "
600 << "allow continuation.";
601 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800602 *bracket_low = current;
603 break;
604
605 } else if (summary->num_iterations >= options().max_num_iterations) {
606 // Check num iterations bound here so that we always evaluate the
607 // max_num_iterations-th iteration against all conditions, and
608 // then perform no additional (unused) evaluations.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800609 summary->error = StringPrintf(
610 "Line search failed: Wolfe bracketing phase failed to "
611 "find a point satisfying strong Wolfe conditions, or a "
612 "bracket containing such a point within specified "
613 "max_num_iterations: %d",
614 options().max_num_iterations);
615 if (!options().is_silent) {
616 LOG(WARNING) << summary->error;
617 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800618 // Ensure that bracket_low is always set to the step size amongst all
619 // those tested which minimizes f() and satisfies the Armijo condition
620 // when we terminate due to the 'artificial' max_num_iterations condition.
621 *bracket_low =
622 current.value_is_valid && current.value < bracket_low->value
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800623 ? current
624 : *bracket_low;
Austin Schuh70cc9552019-01-21 19:46:48 -0800625 break;
626 }
627 // Either: f(current) is invalid; or, f(current) is valid, but does not
628 // satisfy the strong Wolfe conditions itself, or the conditions for
629 // being a boundary of a bracket.
630
631 // If f(current) is valid, (but meets no criteria) expand the search by
632 // increasing the step size. If f(current) is invalid, contract the step
633 // size.
634 //
635 // In Nocedal & Wright [1] (p60), the step-size can only increase in the
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800636 // bracketing phase: step_size_{k+1} \in [step_size_k, step_size_k *
637 // factor]. However this does not account for the function returning invalid
638 // values which we support, in which case we need to contract the step size
639 // whilst ensuring that we do not invert the bracket, i.e, we require that:
Austin Schuh70cc9552019-01-21 19:46:48 -0800640 // step_size_{k-1} <= step_size_{k+1} < step_size_k.
641 const double min_step_size =
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800642 current.value_is_valid ? current.x : previous.x;
Austin Schuh70cc9552019-01-21 19:46:48 -0800643 const double max_step_size =
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800644 current.value_is_valid ? (current.x * options().max_step_expansion)
645 : current.x;
Austin Schuh70cc9552019-01-21 19:46:48 -0800646
647 // We are performing 2-point interpolation only here, but the API of
648 // InterpolatingPolynomialMinimizingStepSize() allows for up to
649 // 3-point interpolation, so pad call with a sample with an invalid
650 // value that will therefore be ignored.
651 const FunctionSample unused_previous;
652 DCHECK(!unused_previous.value_is_valid);
653 // Contracts step size if f(current) is not valid.
654 const double polynomial_minimization_start_time = WallTimeInSeconds();
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800655 const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
656 options().interpolation_type,
657 previous,
658 unused_previous,
659 current,
660 min_step_size,
661 max_step_size);
Austin Schuh70cc9552019-01-21 19:46:48 -0800662 summary->polynomial_minimization_time_in_seconds +=
663 (WallTimeInSeconds() - polynomial_minimization_start_time);
664 if (step_size * descent_direction_max_norm < options().min_step_size) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800665 summary->error = StringPrintf(
666 "Line search failed: step_size too small: %.5e "
667 "with descent_direction_max_norm: %.5e",
668 step_size,
669 descent_direction_max_norm);
670 if (!options().is_silent) {
671 LOG(WARNING) << summary->error;
672 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800673 return false;
674 }
675
676 // Only advance the lower boundary (in x) of the bracket if f(current)
677 // is valid such that we can support contracting the step size when
678 // f(current) is invalid without risking inverting the bracket in x, i.e.
679 // prevent previous.x > current.x.
680 previous = current.value_is_valid ? current : previous;
681 ++summary->num_function_evaluations;
682 ++summary->num_gradient_evaluations;
683 function->Evaluate(step_size, kEvaluateGradient, &current);
684 }
685
686 // Ensure that even if a valid bracket was found, we will only mark a zoom
687 // as required if the bracket's width is greater than our minimum tolerance.
688 if (*do_zoom_search &&
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800689 fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm <
690 options().min_step_size) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800691 *do_zoom_search = false;
692 }
693
694 return true;
695}
696
697// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
698// on return false, if we stopped searching due to the 'artificial' condition of
699// reaching max_num_iterations, solution is the step size amongst all those
700// tested, which satisfied the Armijo decrease condition and minimized f().
701bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
702 FunctionSample bracket_low,
703 FunctionSample bracket_high,
704 FunctionSample* solution,
705 Summary* summary) const {
706 LineSearchFunction* function = options().function;
707
708 CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
709 << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
710 << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
711 << "the developers!, initial_position: " << initial_position
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800712 << ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
Austin Schuh70cc9552019-01-21 19:46:48 -0800713 // We do not require bracket_high.gradient_is_valid as the gradient condition
714 // for a valid bracket is only dependent upon bracket_low.gradient, and
715 // in order to minimize jacobian evaluations, bracket_high.gradient may
716 // not have been calculated (if bracket_high.value does not satisfy the
717 // Armijo sufficient decrease condition and interpolation method does not
718 // require it).
719 //
720 // We also do not require that: bracket_low.value < bracket_high.value,
721 // although this is typical. This is to deal with the case when
722 // bracket_low = initial_position, bracket_high is the first sample,
723 // and bracket_high does not satisfy the Armijo condition, but still has
724 // bracket_high.value < initial_position.value.
725 CHECK(bracket_high.value_is_valid)
726 << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
727 << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
728 << "contact the developers!, initial_position: " << initial_position
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800729 << ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
Austin Schuh70cc9552019-01-21 19:46:48 -0800730
731 if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
732 // The third condition for a valid initial bracket:
733 //
734 // 3. bracket_high is chosen after bracket_low, s.t.
735 // bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
736 //
737 // is not satisfied. As this can happen when the users' cost function
738 // returns inconsistent gradient values relative to the function values,
739 // we do not CHECK_LT(), but we do stop processing and return an invalid
740 // value.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800741 summary->error = StringPrintf(
742 "Line search failed: Wolfe zoom phase passed a bracket "
743 "which does not satisfy: bracket_low.gradient * "
744 "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
745 "with initial_position: %s, bracket_low: %s, bracket_high:"
746 " %s, the most likely cause of which is the cost function "
747 "returning inconsistent gradient & function values.",
748 bracket_low.gradient * (bracket_high.x - bracket_low.x),
749 initial_position.ToDebugString().c_str(),
750 bracket_low.ToDebugString().c_str(),
751 bracket_high.ToDebugString().c_str());
752 if (!options().is_silent) {
753 LOG(WARNING) << summary->error;
754 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800755 solution->value_is_valid = false;
756 return false;
757 }
758
759 const int num_bracketing_iterations = summary->num_iterations;
760 const double descent_direction_max_norm = function->DirectionInfinityNorm();
761
762 while (true) {
763 // Set solution to bracket_low, as it is our best step size (smallest f())
764 // found thus far and satisfies the Armijo condition, even though it does
765 // not satisfy the Wolfe condition.
766 *solution = bracket_low;
767 if (summary->num_iterations >= options().max_num_iterations) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800768 summary->error = StringPrintf(
769 "Line search failed: Wolfe zoom phase failed to "
770 "find a point satisfying strong Wolfe conditions "
771 "within specified max_num_iterations: %d, "
772 "(num iterations taken for bracketing: %d).",
773 options().max_num_iterations,
774 num_bracketing_iterations);
775 if (!options().is_silent) {
776 LOG(WARNING) << summary->error;
777 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800778 return false;
779 }
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800780 if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm <
781 options().min_step_size) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800782 // Bracket width has been reduced below tolerance, and no point satisfying
783 // the strong Wolfe conditions has been found.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800784 summary->error = StringPrintf(
785 "Line search failed: Wolfe zoom bracket width: %.5e "
786 "too small with descent_direction_max_norm: %.5e.",
787 fabs(bracket_high.x - bracket_low.x),
788 descent_direction_max_norm);
789 if (!options().is_silent) {
790 LOG(WARNING) << summary->error;
791 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800792 return false;
793 }
794
795 ++summary->num_iterations;
796 // Polynomial interpolation requires inputs ordered according to step size,
797 // not f(step size).
798 const FunctionSample& lower_bound_step =
799 bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
800 const FunctionSample& upper_bound_step =
801 bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
802 // We are performing 2-point interpolation only here, but the API of
803 // InterpolatingPolynomialMinimizingStepSize() allows for up to
804 // 3-point interpolation, so pad call with a sample with an invalid
805 // value that will therefore be ignored.
806 const FunctionSample unused_previous;
807 DCHECK(!unused_previous.value_is_valid);
808 const double polynomial_minimization_start_time = WallTimeInSeconds();
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800809 const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
810 options().interpolation_type,
811 lower_bound_step,
812 unused_previous,
813 upper_bound_step,
814 lower_bound_step.x,
815 upper_bound_step.x);
Austin Schuh70cc9552019-01-21 19:46:48 -0800816 summary->polynomial_minimization_time_in_seconds +=
817 (WallTimeInSeconds() - polynomial_minimization_start_time);
818 // No check on magnitude of step size being too small here as it is
819 // lower-bounded by the initial bracket start point, which was valid.
820 //
821 // As we require the gradient to evaluate the Wolfe condition, we always
822 // calculate it together with the value, irrespective of the interpolation
823 // type. As opposed to only calculating the gradient after the Armijo
824 // condition is satisifed, as the computational saving from this approach
825 // would be slight (perhaps even negative due to the extra call). Also,
826 // always calculating the value & gradient together protects against us
827 // reporting invalid solutions if the cost function returns slightly
828 // different function values when evaluated with / without gradients (due
829 // to numerical issues).
830 ++summary->num_function_evaluations;
831 ++summary->num_gradient_evaluations;
832 const bool kEvaluateGradient = true;
833 function->Evaluate(step_size, kEvaluateGradient, solution);
834 if (!solution->value_is_valid || !solution->gradient_is_valid) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800835 summary->error = StringPrintf(
836 "Line search failed: Wolfe Zoom phase found "
837 "step_size: %.5e, for which function is invalid, "
838 "between low_step: %.5e and high_step: %.5e "
839 "at which function is valid.",
840 solution->x,
841 bracket_low.x,
842 bracket_high.x);
843 if (!options().is_silent) {
844 LOG(WARNING) << summary->error;
845 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800846 return false;
847 }
848
849 VLOG(3) << "Zoom iteration: "
850 << summary->num_iterations - num_bracketing_iterations
851 << ", bracket_low: " << bracket_low
852 << ", bracket_high: " << bracket_high
853 << ", minimizing solution: " << *solution;
854
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800855 if ((solution->value > (initial_position.value +
856 options().sufficient_decrease *
857 initial_position.gradient * solution->x)) ||
Austin Schuh70cc9552019-01-21 19:46:48 -0800858 (solution->value >= bracket_low.value)) {
859 // Armijo sufficient decrease not satisfied, or not better
860 // than current lowest sample, use as new upper bound.
861 bracket_high = *solution;
862 continue;
863 }
864
865 // Armijo sufficient decrease satisfied, check strong Wolfe condition.
866 if (fabs(solution->gradient) <=
867 -options().sufficient_curvature_decrease * initial_position.gradient) {
868 // Found a valid termination point satisfying strong Wolfe conditions.
869 VLOG(3) << std::scientific
870 << std::setprecision(kErrorMessageNumericPrecision)
871 << "Zoom phase found step size: " << solution->x
872 << ", satisfying strong Wolfe conditions.";
873 break;
874
875 } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
876 bracket_high = bracket_low;
877 }
878
879 bracket_low = *solution;
880 }
881 // Solution contains a valid point which satisfies the strong Wolfe
882 // conditions.
883 return true;
884}
885
886} // namespace internal
887} // namespace ceres