Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |
| 32 | #define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |
| 33 | |
| 34 | #include <vector> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 35 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 36 | #include "ceres/internal/port.h" |
| 37 | #include "ceres/sparse_matrix.h" |
| 38 | #include "ceres/types.h" |
| 39 | #include "glog/logging.h" |
| 40 | |
| 41 | namespace ceres { |
| 42 | |
| 43 | struct CRSMatrix; |
| 44 | |
| 45 | namespace internal { |
| 46 | |
| 47 | class TripletSparseMatrix; |
| 48 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 49 | class CERES_EXPORT_INTERNAL CompressedRowSparseMatrix : public SparseMatrix { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 50 | public: |
| 51 | enum StorageType { |
| 52 | UNSYMMETRIC, |
| 53 | // Matrix is assumed to be symmetric but only the lower triangular |
| 54 | // part of the matrix is stored. |
| 55 | LOWER_TRIANGULAR, |
| 56 | // Matrix is assumed to be symmetric but only the upper triangular |
| 57 | // part of the matrix is stored. |
| 58 | UPPER_TRIANGULAR |
| 59 | }; |
| 60 | |
| 61 | // Create a matrix with the same content as the TripletSparseMatrix |
| 62 | // input. We assume that input does not have any repeated |
| 63 | // entries. |
| 64 | // |
| 65 | // The storage type of the matrix is set to UNSYMMETRIC. |
| 66 | // |
| 67 | // Caller owns the result. |
| 68 | static CompressedRowSparseMatrix* FromTripletSparseMatrix( |
| 69 | const TripletSparseMatrix& input); |
| 70 | |
| 71 | // Create a matrix with the same content as the TripletSparseMatrix |
| 72 | // input transposed. We assume that input does not have any repeated |
| 73 | // entries. |
| 74 | // |
| 75 | // The storage type of the matrix is set to UNSYMMETRIC. |
| 76 | // |
| 77 | // Caller owns the result. |
| 78 | static CompressedRowSparseMatrix* FromTripletSparseMatrixTransposed( |
| 79 | const TripletSparseMatrix& input); |
| 80 | |
| 81 | // Use this constructor only if you know what you are doing. This |
| 82 | // creates a "blank" matrix with the appropriate amount of memory |
| 83 | // allocated. However, the object itself is in an inconsistent state |
| 84 | // as the rows and cols matrices do not match the values of |
| 85 | // num_rows, num_cols and max_num_nonzeros. |
| 86 | // |
| 87 | // The use case for this constructor is that when the user knows the |
| 88 | // size of the matrix to begin with and wants to update the layout |
| 89 | // manually, instead of going via the indirect route of first |
| 90 | // constructing a TripletSparseMatrix, which leads to more than |
| 91 | // double the peak memory usage. |
| 92 | // |
| 93 | // The storage type is set to UNSYMMETRIC. |
| 94 | CompressedRowSparseMatrix(int num_rows, int num_cols, int max_num_nonzeros); |
| 95 | |
| 96 | // Build a square sparse diagonal matrix with num_rows rows and |
| 97 | // columns. The diagonal m(i,i) = diagonal(i); |
| 98 | // |
| 99 | // The storage type is set to UNSYMMETRIC |
| 100 | CompressedRowSparseMatrix(const double* diagonal, int num_rows); |
| 101 | |
| 102 | // SparseMatrix interface. |
| 103 | virtual ~CompressedRowSparseMatrix(); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 104 | void SetZero() final; |
| 105 | void RightMultiply(const double* x, double* y) const final; |
| 106 | void LeftMultiply(const double* x, double* y) const final; |
| 107 | void SquaredColumnNorm(double* x) const final; |
| 108 | void ScaleColumns(const double* scale) final; |
| 109 | void ToDenseMatrix(Matrix* dense_matrix) const final; |
| 110 | void ToTextFile(FILE* file) const final; |
| 111 | int num_rows() const final { return num_rows_; } |
| 112 | int num_cols() const final { return num_cols_; } |
| 113 | int num_nonzeros() const final { return rows_[num_rows_]; } |
| 114 | const double* values() const final { return &values_[0]; } |
| 115 | double* mutable_values() final { return &values_[0]; } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 116 | |
| 117 | // Delete the bottom delta_rows. |
| 118 | // num_rows -= delta_rows |
| 119 | void DeleteRows(int delta_rows); |
| 120 | |
| 121 | // Append the contents of m to the bottom of this matrix. m must |
| 122 | // have the same number of columns as this matrix. |
| 123 | void AppendRows(const CompressedRowSparseMatrix& m); |
| 124 | |
| 125 | void ToCRSMatrix(CRSMatrix* matrix) const; |
| 126 | |
| 127 | CompressedRowSparseMatrix* Transpose() const; |
| 128 | |
| 129 | // Destructive array resizing method. |
| 130 | void SetMaxNumNonZeros(int num_nonzeros); |
| 131 | |
| 132 | // Non-destructive array resizing method. |
| 133 | void set_num_rows(const int num_rows) { num_rows_ = num_rows; } |
| 134 | void set_num_cols(const int num_cols) { num_cols_ = num_cols; } |
| 135 | |
| 136 | // Low level access methods that expose the structure of the matrix. |
| 137 | const int* cols() const { return &cols_[0]; } |
| 138 | int* mutable_cols() { return &cols_[0]; } |
| 139 | |
| 140 | const int* rows() const { return &rows_[0]; } |
| 141 | int* mutable_rows() { return &rows_[0]; } |
| 142 | |
| 143 | const StorageType storage_type() const { return storage_type_; } |
| 144 | void set_storage_type(const StorageType storage_type) { |
| 145 | storage_type_ = storage_type; |
| 146 | } |
| 147 | |
| 148 | const std::vector<int>& row_blocks() const { return row_blocks_; } |
| 149 | std::vector<int>* mutable_row_blocks() { return &row_blocks_; } |
| 150 | |
| 151 | const std::vector<int>& col_blocks() const { return col_blocks_; } |
| 152 | std::vector<int>* mutable_col_blocks() { return &col_blocks_; } |
| 153 | |
| 154 | // Create a block diagonal CompressedRowSparseMatrix with the given |
| 155 | // block structure. The individual blocks are assumed to be laid out |
| 156 | // contiguously in the diagonal array, one block at a time. |
| 157 | // |
| 158 | // Caller owns the result. |
| 159 | static CompressedRowSparseMatrix* CreateBlockDiagonalMatrix( |
| 160 | const double* diagonal, const std::vector<int>& blocks); |
| 161 | |
| 162 | // Options struct to control the generation of random block sparse |
| 163 | // matrices in compressed row sparse format. |
| 164 | // |
| 165 | // The random matrix generation proceeds as follows. |
| 166 | // |
| 167 | // First the row and column block structure is determined by |
| 168 | // generating random row and column block sizes that lie within the |
| 169 | // given bounds. |
| 170 | // |
| 171 | // Then we walk the block structure of the resulting matrix, and with |
| 172 | // probability block_density detemine whether they are structurally |
| 173 | // zero or not. If the answer is no, then we generate entries for the |
| 174 | // block which are distributed normally. |
| 175 | struct RandomMatrixOptions { |
| 176 | // Type of matrix to create. |
| 177 | // |
| 178 | // If storage_type is UPPER_TRIANGULAR (LOWER_TRIANGULAR), then |
| 179 | // create a square symmetric matrix with just the upper triangular |
| 180 | // (lower triangular) part. In this case, num_col_blocks, |
| 181 | // min_col_block_size and max_col_block_size will be ignored and |
| 182 | // assumed to be equal to the corresponding row settings. |
| 183 | StorageType storage_type = UNSYMMETRIC; |
| 184 | |
| 185 | int num_row_blocks = 0; |
| 186 | int min_row_block_size = 0; |
| 187 | int max_row_block_size = 0; |
| 188 | int num_col_blocks = 0; |
| 189 | int min_col_block_size = 0; |
| 190 | int max_col_block_size = 0; |
| 191 | |
| 192 | // 0 < block_density <= 1 is the probability of a block being |
| 193 | // present in the matrix. A given random matrix will not have |
| 194 | // precisely this density. |
| 195 | double block_density = 0.0; |
| 196 | }; |
| 197 | |
| 198 | // Create a random CompressedRowSparseMatrix whose entries are |
| 199 | // normally distributed and whose structure is determined by |
| 200 | // RandomMatrixOptions. |
| 201 | // |
| 202 | // Caller owns the result. |
| 203 | static CompressedRowSparseMatrix* CreateRandomMatrix( |
| 204 | RandomMatrixOptions options); |
| 205 | |
| 206 | private: |
| 207 | static CompressedRowSparseMatrix* FromTripletSparseMatrix( |
| 208 | const TripletSparseMatrix& input, bool transpose); |
| 209 | |
| 210 | int num_rows_; |
| 211 | int num_cols_; |
| 212 | std::vector<int> rows_; |
| 213 | std::vector<int> cols_; |
| 214 | std::vector<double> values_; |
| 215 | StorageType storage_type_; |
| 216 | |
| 217 | // If the matrix has an underlying block structure, then it can also |
| 218 | // carry with it row and column block sizes. This is auxilliary and |
| 219 | // optional information for use by algorithms operating on the |
| 220 | // matrix. The class itself does not make use of this information in |
| 221 | // any way. |
| 222 | std::vector<int> row_blocks_; |
| 223 | std::vector<int> col_blocks_; |
| 224 | }; |
| 225 | |
| 226 | } // namespace internal |
| 227 | } // namespace ceres |
| 228 | |
| 229 | #endif // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |