blob: beb8bbc2c2a6041058fe8c1dbcdf99dcb48f65fe [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30
31#ifndef CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_
32#define CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_
33
34#include <algorithm>
35#include <memory>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080036
Austin Schuh70cc9552019-01-21 19:46:48 -080037#include "ceres/internal/eigen.h"
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080038#include "ceres/linear_operator.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080039
40namespace ceres {
41namespace internal {
42
43class SparseMatrix;
44
45// A linear operator which takes a matrix A and a diagonal vector D and
46// performs products of the form
47//
48// (A^T A + D^T D)x
49//
50// This is used to implement iterative general sparse linear solving with
51// conjugate gradients, where A is the Jacobian and D is a regularizing
52// parameter. A brief proof that D^T D is the correct regularizer:
53//
54// Given a regularized least squares problem:
55//
56// min ||Ax - b||^2 + ||Dx||^2
57// x
58//
59// First expand into matrix notation:
60//
61// (Ax - b)^T (Ax - b) + xD^TDx
62//
63// Then multiply out to get:
64//
65// = xA^TAx - 2b^T Ax + b^Tb + xD^TDx
66//
67// Take the derivative:
68//
69// 0 = 2A^TAx - 2A^T b + 2 D^TDx
70// 0 = A^TAx - A^T b + D^TDx
71// 0 = (A^TA + D^TD)x - A^T b
72//
73// Thus, the symmetric system we need to solve for CGNR is
74//
75// Sx = z
76//
77// with S = A^TA + D^TD
78// and z = A^T b
79//
80// Note: This class is not thread safe, since it uses some temporary storage.
81class CgnrLinearOperator : public LinearOperator {
82 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080083 CgnrLinearOperator(const LinearOperator& A, const double* D)
84 : A_(A), D_(D), z_(new double[A.num_rows()]) {}
Austin Schuh70cc9552019-01-21 19:46:48 -080085 virtual ~CgnrLinearOperator() {}
86
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080087 void RightMultiply(const double* x, double* y) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -080088 std::fill(z_.get(), z_.get() + A_.num_rows(), 0.0);
89
90 // z = Ax
91 A_.RightMultiply(x, z_.get());
92
93 // y = y + Atz
94 A_.LeftMultiply(z_.get(), y);
95
96 // y = y + DtDx
97 if (D_ != NULL) {
98 int n = A_.num_cols();
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080099 VectorRef(y, n).array() +=
100 ConstVectorRef(D_, n).array().square() * ConstVectorRef(x, n).array();
Austin Schuh70cc9552019-01-21 19:46:48 -0800101 }
102 }
103
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800104 void LeftMultiply(const double* x, double* y) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -0800105 RightMultiply(x, y);
106 }
107
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800108 int num_rows() const final { return A_.num_cols(); }
109 int num_cols() const final { return A_.num_cols(); }
Austin Schuh70cc9552019-01-21 19:46:48 -0800110
111 private:
112 const LinearOperator& A_;
113 const double* D_;
114 std::unique_ptr<double[]> z_;
115};
116
117} // namespace internal
118} // namespace ceres
119
120#endif // CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_