blob: 02d3fb1234aee17b1156a1b4f300a558b5548f7b [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/block_sparse_matrix.h"
32
33#include <memory>
34#include <string>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080035
Austin Schuh70cc9552019-01-21 19:46:48 -080036#include "ceres/casts.h"
37#include "ceres/internal/eigen.h"
38#include "ceres/linear_least_squares_problems.h"
39#include "ceres/triplet_sparse_matrix.h"
40#include "glog/logging.h"
41#include "gtest/gtest.h"
42
43namespace ceres {
44namespace internal {
45
46class BlockSparseMatrixTest : public ::testing::Test {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080047 protected:
48 void SetUp() final {
Austin Schuh70cc9552019-01-21 19:46:48 -080049 std::unique_ptr<LinearLeastSquaresProblem> problem(
50 CreateLinearLeastSquaresProblemFromId(2));
51 CHECK(problem != nullptr);
52 A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
53
54 problem.reset(CreateLinearLeastSquaresProblemFromId(1));
55 CHECK(problem != nullptr);
56 B_.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
57
58 CHECK_EQ(A_->num_rows(), B_->num_rows());
59 CHECK_EQ(A_->num_cols(), B_->num_cols());
60 CHECK_EQ(A_->num_nonzeros(), B_->num_nonzeros());
61 }
62
63 std::unique_ptr<BlockSparseMatrix> A_;
64 std::unique_ptr<TripletSparseMatrix> B_;
65};
66
67TEST_F(BlockSparseMatrixTest, SetZeroTest) {
68 A_->SetZero();
69 EXPECT_EQ(13, A_->num_nonzeros());
70}
71
72TEST_F(BlockSparseMatrixTest, RightMultiplyTest) {
73 Vector y_a = Vector::Zero(A_->num_rows());
74 Vector y_b = Vector::Zero(A_->num_rows());
75 for (int i = 0; i < A_->num_cols(); ++i) {
76 Vector x = Vector::Zero(A_->num_cols());
77 x[i] = 1.0;
78 A_->RightMultiply(x.data(), y_a.data());
79 B_->RightMultiply(x.data(), y_b.data());
80 EXPECT_LT((y_a - y_b).norm(), 1e-12);
81 }
82}
83
84TEST_F(BlockSparseMatrixTest, LeftMultiplyTest) {
85 Vector y_a = Vector::Zero(A_->num_cols());
86 Vector y_b = Vector::Zero(A_->num_cols());
87 for (int i = 0; i < A_->num_rows(); ++i) {
88 Vector x = Vector::Zero(A_->num_rows());
89 x[i] = 1.0;
90 A_->LeftMultiply(x.data(), y_a.data());
91 B_->LeftMultiply(x.data(), y_b.data());
92 EXPECT_LT((y_a - y_b).norm(), 1e-12);
93 }
94}
95
96TEST_F(BlockSparseMatrixTest, SquaredColumnNormTest) {
97 Vector y_a = Vector::Zero(A_->num_cols());
98 Vector y_b = Vector::Zero(A_->num_cols());
99 A_->SquaredColumnNorm(y_a.data());
100 B_->SquaredColumnNorm(y_b.data());
101 EXPECT_LT((y_a - y_b).norm(), 1e-12);
102}
103
104TEST_F(BlockSparseMatrixTest, ToDenseMatrixTest) {
105 Matrix m_a;
106 Matrix m_b;
107 A_->ToDenseMatrix(&m_a);
108 B_->ToDenseMatrix(&m_b);
109 EXPECT_LT((m_a - m_b).norm(), 1e-12);
110}
111
112TEST_F(BlockSparseMatrixTest, AppendRows) {
113 std::unique_ptr<LinearLeastSquaresProblem> problem(
114 CreateLinearLeastSquaresProblemFromId(2));
115 std::unique_ptr<BlockSparseMatrix> m(
116 down_cast<BlockSparseMatrix*>(problem->A.release()));
117 A_->AppendRows(*m);
118 EXPECT_EQ(A_->num_rows(), 2 * m->num_rows());
119 EXPECT_EQ(A_->num_cols(), m->num_cols());
120
121 problem.reset(CreateLinearLeastSquaresProblemFromId(1));
122 std::unique_ptr<TripletSparseMatrix> m2(
123 down_cast<TripletSparseMatrix*>(problem->A.release()));
124 B_->AppendRows(*m2);
125
126 Vector y_a = Vector::Zero(A_->num_rows());
127 Vector y_b = Vector::Zero(A_->num_rows());
128 for (int i = 0; i < A_->num_cols(); ++i) {
129 Vector x = Vector::Zero(A_->num_cols());
130 x[i] = 1.0;
131 y_a.setZero();
132 y_b.setZero();
133
134 A_->RightMultiply(x.data(), y_a.data());
135 B_->RightMultiply(x.data(), y_b.data());
136 EXPECT_LT((y_a - y_b).norm(), 1e-12);
137 }
138}
139
140TEST_F(BlockSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {
141 const std::vector<Block>& column_blocks = A_->block_structure()->cols;
142 const int num_cols =
143 column_blocks.back().size + column_blocks.back().position;
144 Vector diagonal(num_cols);
145 for (int i = 0; i < num_cols; ++i) {
146 diagonal(i) = 2 * i * i + 1;
147 }
148 std::unique_ptr<BlockSparseMatrix> appendage(
149 BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks));
150
151 A_->AppendRows(*appendage);
152 Vector y_a, y_b;
153 y_a.resize(A_->num_rows());
154 y_b.resize(A_->num_rows());
155 for (int i = 0; i < A_->num_cols(); ++i) {
156 Vector x = Vector::Zero(A_->num_cols());
157 x[i] = 1.0;
158 y_a.setZero();
159 y_b.setZero();
160
161 A_->RightMultiply(x.data(), y_a.data());
162 B_->RightMultiply(x.data(), y_b.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800163 EXPECT_LT((y_a.head(B_->num_rows()) - y_b.head(B_->num_rows())).norm(),
164 1e-12);
Austin Schuh70cc9552019-01-21 19:46:48 -0800165 Vector expected_tail = Vector::Zero(A_->num_cols());
166 expected_tail(i) = diagonal(i);
167 EXPECT_LT((y_a.tail(A_->num_cols()) - expected_tail).norm(), 1e-12);
168 }
169
Austin Schuh70cc9552019-01-21 19:46:48 -0800170 A_->DeleteRowBlocks(column_blocks.size());
171 EXPECT_EQ(A_->num_rows(), B_->num_rows());
172 EXPECT_EQ(A_->num_cols(), B_->num_cols());
173
174 y_a.resize(A_->num_rows());
175 y_b.resize(A_->num_rows());
176 for (int i = 0; i < A_->num_cols(); ++i) {
177 Vector x = Vector::Zero(A_->num_cols());
178 x[i] = 1.0;
179 y_a.setZero();
180 y_b.setZero();
181
182 A_->RightMultiply(x.data(), y_a.data());
183 B_->RightMultiply(x.data(), y_b.data());
184 EXPECT_LT((y_a - y_b).norm(), 1e-12);
185 }
186}
187
188TEST(BlockSparseMatrix, CreateDiagonalMatrix) {
189 std::vector<Block> column_blocks;
190 column_blocks.push_back(Block(2, 0));
191 column_blocks.push_back(Block(1, 2));
192 column_blocks.push_back(Block(3, 3));
193 const int num_cols =
194 column_blocks.back().size + column_blocks.back().position;
195 Vector diagonal(num_cols);
196 for (int i = 0; i < num_cols; ++i) {
197 diagonal(i) = 2 * i * i + 1;
198 }
199
200 std::unique_ptr<BlockSparseMatrix> m(
201 BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks));
202 const CompressedRowBlockStructure* bs = m->block_structure();
203 EXPECT_EQ(bs->cols.size(), column_blocks.size());
204 for (int i = 0; i < column_blocks.size(); ++i) {
205 EXPECT_EQ(bs->cols[i].size, column_blocks[i].size);
206 EXPECT_EQ(bs->cols[i].position, column_blocks[i].position);
207 }
208 EXPECT_EQ(m->num_rows(), m->num_cols());
209 Vector x = Vector::Ones(num_cols);
210 Vector y = Vector::Zero(num_cols);
211 m->RightMultiply(x.data(), y.data());
212 for (int i = 0; i < num_cols; ++i) {
213 EXPECT_NEAR(y[i], diagonal[i], std::numeric_limits<double>::epsilon());
214 }
215}
216
Austin Schuh70cc9552019-01-21 19:46:48 -0800217} // namespace internal
218} // namespace ceres