Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/block_sparse_matrix.h" |
| 32 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 33 | #include <algorithm> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 34 | #include <cstddef> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 35 | #include <vector> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 36 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 37 | #include "ceres/block_structure.h" |
| 38 | #include "ceres/internal/eigen.h" |
| 39 | #include "ceres/random.h" |
| 40 | #include "ceres/small_blas.h" |
| 41 | #include "ceres/triplet_sparse_matrix.h" |
| 42 | #include "glog/logging.h" |
| 43 | |
| 44 | namespace ceres { |
| 45 | namespace internal { |
| 46 | |
| 47 | using std::vector; |
| 48 | |
| 49 | BlockSparseMatrix::~BlockSparseMatrix() {} |
| 50 | |
| 51 | BlockSparseMatrix::BlockSparseMatrix( |
| 52 | CompressedRowBlockStructure* block_structure) |
| 53 | : num_rows_(0), |
| 54 | num_cols_(0), |
| 55 | num_nonzeros_(0), |
| 56 | block_structure_(block_structure) { |
| 57 | CHECK(block_structure_ != nullptr); |
| 58 | |
| 59 | // Count the number of columns in the matrix. |
| 60 | for (int i = 0; i < block_structure_->cols.size(); ++i) { |
| 61 | num_cols_ += block_structure_->cols[i].size; |
| 62 | } |
| 63 | |
| 64 | // Count the number of non-zero entries and the number of rows in |
| 65 | // the matrix. |
| 66 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 67 | int row_block_size = block_structure_->rows[i].block.size; |
| 68 | num_rows_ += row_block_size; |
| 69 | |
| 70 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 71 | for (int j = 0; j < cells.size(); ++j) { |
| 72 | int col_block_id = cells[j].block_id; |
| 73 | int col_block_size = block_structure_->cols[col_block_id].size; |
| 74 | num_nonzeros_ += col_block_size * row_block_size; |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | CHECK_GE(num_rows_, 0); |
| 79 | CHECK_GE(num_cols_, 0); |
| 80 | CHECK_GE(num_nonzeros_, 0); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 81 | VLOG(2) << "Allocating values array with " << num_nonzeros_ * sizeof(double) |
| 82 | << " bytes."; // NOLINT |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 83 | values_.reset(new double[num_nonzeros_]); |
| 84 | max_num_nonzeros_ = num_nonzeros_; |
| 85 | CHECK(values_ != nullptr); |
| 86 | } |
| 87 | |
| 88 | void BlockSparseMatrix::SetZero() { |
| 89 | std::fill(values_.get(), values_.get() + num_nonzeros_, 0.0); |
| 90 | } |
| 91 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 92 | void BlockSparseMatrix::RightMultiply(const double* x, double* y) const { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 93 | CHECK(x != nullptr); |
| 94 | CHECK(y != nullptr); |
| 95 | |
| 96 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 97 | int row_block_pos = block_structure_->rows[i].block.position; |
| 98 | int row_block_size = block_structure_->rows[i].block.size; |
| 99 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 100 | for (int j = 0; j < cells.size(); ++j) { |
| 101 | int col_block_id = cells[j].block_id; |
| 102 | int col_block_size = block_structure_->cols[col_block_id].size; |
| 103 | int col_block_pos = block_structure_->cols[col_block_id].position; |
| 104 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 105 | values_.get() + cells[j].position, |
| 106 | row_block_size, |
| 107 | col_block_size, |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 108 | x + col_block_pos, |
| 109 | y + row_block_pos); |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | void BlockSparseMatrix::LeftMultiply(const double* x, double* y) const { |
| 115 | CHECK(x != nullptr); |
| 116 | CHECK(y != nullptr); |
| 117 | |
| 118 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 119 | int row_block_pos = block_structure_->rows[i].block.position; |
| 120 | int row_block_size = block_structure_->rows[i].block.size; |
| 121 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 122 | for (int j = 0; j < cells.size(); ++j) { |
| 123 | int col_block_id = cells[j].block_id; |
| 124 | int col_block_size = block_structure_->cols[col_block_id].size; |
| 125 | int col_block_pos = block_structure_->cols[col_block_id].position; |
| 126 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 127 | values_.get() + cells[j].position, |
| 128 | row_block_size, |
| 129 | col_block_size, |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 130 | x + row_block_pos, |
| 131 | y + col_block_pos); |
| 132 | } |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | void BlockSparseMatrix::SquaredColumnNorm(double* x) const { |
| 137 | CHECK(x != nullptr); |
| 138 | VectorRef(x, num_cols_).setZero(); |
| 139 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 140 | int row_block_size = block_structure_->rows[i].block.size; |
| 141 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 142 | for (int j = 0; j < cells.size(); ++j) { |
| 143 | int col_block_id = cells[j].block_id; |
| 144 | int col_block_size = block_structure_->cols[col_block_id].size; |
| 145 | int col_block_pos = block_structure_->cols[col_block_id].position; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 146 | const MatrixRef m( |
| 147 | values_.get() + cells[j].position, row_block_size, col_block_size); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 148 | VectorRef(x + col_block_pos, col_block_size) += m.colwise().squaredNorm(); |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | void BlockSparseMatrix::ScaleColumns(const double* scale) { |
| 154 | CHECK(scale != nullptr); |
| 155 | |
| 156 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 157 | int row_block_size = block_structure_->rows[i].block.size; |
| 158 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 159 | for (int j = 0; j < cells.size(); ++j) { |
| 160 | int col_block_id = cells[j].block_id; |
| 161 | int col_block_size = block_structure_->cols[col_block_id].size; |
| 162 | int col_block_pos = block_structure_->cols[col_block_id].position; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 163 | MatrixRef m( |
| 164 | values_.get() + cells[j].position, row_block_size, col_block_size); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 165 | m *= ConstVectorRef(scale + col_block_pos, col_block_size).asDiagonal(); |
| 166 | } |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { |
| 171 | CHECK(dense_matrix != nullptr); |
| 172 | |
| 173 | dense_matrix->resize(num_rows_, num_cols_); |
| 174 | dense_matrix->setZero(); |
| 175 | Matrix& m = *dense_matrix; |
| 176 | |
| 177 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 178 | int row_block_pos = block_structure_->rows[i].block.position; |
| 179 | int row_block_size = block_structure_->rows[i].block.size; |
| 180 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 181 | for (int j = 0; j < cells.size(); ++j) { |
| 182 | int col_block_id = cells[j].block_id; |
| 183 | int col_block_size = block_structure_->cols[col_block_id].size; |
| 184 | int col_block_pos = block_structure_->cols[col_block_id].position; |
| 185 | int jac_pos = cells[j].position; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 186 | m.block(row_block_pos, col_block_pos, row_block_size, col_block_size) += |
| 187 | MatrixRef(values_.get() + jac_pos, row_block_size, col_block_size); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 188 | } |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | void BlockSparseMatrix::ToTripletSparseMatrix( |
| 193 | TripletSparseMatrix* matrix) const { |
| 194 | CHECK(matrix != nullptr); |
| 195 | |
| 196 | matrix->Reserve(num_nonzeros_); |
| 197 | matrix->Resize(num_rows_, num_cols_); |
| 198 | matrix->SetZero(); |
| 199 | |
| 200 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 201 | int row_block_pos = block_structure_->rows[i].block.position; |
| 202 | int row_block_size = block_structure_->rows[i].block.size; |
| 203 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 204 | for (int j = 0; j < cells.size(); ++j) { |
| 205 | int col_block_id = cells[j].block_id; |
| 206 | int col_block_size = block_structure_->cols[col_block_id].size; |
| 207 | int col_block_pos = block_structure_->cols[col_block_id].position; |
| 208 | int jac_pos = cells[j].position; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 209 | for (int r = 0; r < row_block_size; ++r) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 210 | for (int c = 0; c < col_block_size; ++c, ++jac_pos) { |
| 211 | matrix->mutable_rows()[jac_pos] = row_block_pos + r; |
| 212 | matrix->mutable_cols()[jac_pos] = col_block_pos + c; |
| 213 | matrix->mutable_values()[jac_pos] = values_[jac_pos]; |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | } |
| 218 | matrix->set_num_nonzeros(num_nonzeros_); |
| 219 | } |
| 220 | |
| 221 | // Return a pointer to the block structure. We continue to hold |
| 222 | // ownership of the object though. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 223 | const CompressedRowBlockStructure* BlockSparseMatrix::block_structure() const { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 224 | return block_structure_.get(); |
| 225 | } |
| 226 | |
| 227 | void BlockSparseMatrix::ToTextFile(FILE* file) const { |
| 228 | CHECK(file != nullptr); |
| 229 | for (int i = 0; i < block_structure_->rows.size(); ++i) { |
| 230 | const int row_block_pos = block_structure_->rows[i].block.position; |
| 231 | const int row_block_size = block_structure_->rows[i].block.size; |
| 232 | const vector<Cell>& cells = block_structure_->rows[i].cells; |
| 233 | for (int j = 0; j < cells.size(); ++j) { |
| 234 | const int col_block_id = cells[j].block_id; |
| 235 | const int col_block_size = block_structure_->cols[col_block_id].size; |
| 236 | const int col_block_pos = block_structure_->cols[col_block_id].position; |
| 237 | int jac_pos = cells[j].position; |
| 238 | for (int r = 0; r < row_block_size; ++r) { |
| 239 | for (int c = 0; c < col_block_size; ++c) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 240 | fprintf(file, |
| 241 | "% 10d % 10d %17f\n", |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 242 | row_block_pos + r, |
| 243 | col_block_pos + c, |
| 244 | values_[jac_pos++]); |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | BlockSparseMatrix* BlockSparseMatrix::CreateDiagonalMatrix( |
| 252 | const double* diagonal, const std::vector<Block>& column_blocks) { |
| 253 | // Create the block structure for the diagonal matrix. |
| 254 | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure(); |
| 255 | bs->cols = column_blocks; |
| 256 | int position = 0; |
| 257 | bs->rows.resize(column_blocks.size(), CompressedRow(1)); |
| 258 | for (int i = 0; i < column_blocks.size(); ++i) { |
| 259 | CompressedRow& row = bs->rows[i]; |
| 260 | row.block = column_blocks[i]; |
| 261 | Cell& cell = row.cells[0]; |
| 262 | cell.block_id = i; |
| 263 | cell.position = position; |
| 264 | position += row.block.size * row.block.size; |
| 265 | } |
| 266 | |
| 267 | // Create the BlockSparseMatrix with the given block structure. |
| 268 | BlockSparseMatrix* matrix = new BlockSparseMatrix(bs); |
| 269 | matrix->SetZero(); |
| 270 | |
| 271 | // Fill the values array of the block sparse matrix. |
| 272 | double* values = matrix->mutable_values(); |
| 273 | for (int i = 0; i < column_blocks.size(); ++i) { |
| 274 | const int size = column_blocks[i].size; |
| 275 | for (int j = 0; j < size; ++j) { |
| 276 | // (j + 1) * size is compact way of accessing the (j,j) entry. |
| 277 | values[j * (size + 1)] = diagonal[j]; |
| 278 | } |
| 279 | diagonal += size; |
| 280 | values += size * size; |
| 281 | } |
| 282 | |
| 283 | return matrix; |
| 284 | } |
| 285 | |
| 286 | void BlockSparseMatrix::AppendRows(const BlockSparseMatrix& m) { |
| 287 | CHECK_EQ(m.num_cols(), num_cols()); |
| 288 | const CompressedRowBlockStructure* m_bs = m.block_structure(); |
| 289 | CHECK_EQ(m_bs->cols.size(), block_structure_->cols.size()); |
| 290 | |
| 291 | const int old_num_nonzeros = num_nonzeros_; |
| 292 | const int old_num_row_blocks = block_structure_->rows.size(); |
| 293 | block_structure_->rows.resize(old_num_row_blocks + m_bs->rows.size()); |
| 294 | |
| 295 | for (int i = 0; i < m_bs->rows.size(); ++i) { |
| 296 | const CompressedRow& m_row = m_bs->rows[i]; |
| 297 | CompressedRow& row = block_structure_->rows[old_num_row_blocks + i]; |
| 298 | row.block.size = m_row.block.size; |
| 299 | row.block.position = num_rows_; |
| 300 | num_rows_ += m_row.block.size; |
| 301 | row.cells.resize(m_row.cells.size()); |
| 302 | for (int c = 0; c < m_row.cells.size(); ++c) { |
| 303 | const int block_id = m_row.cells[c].block_id; |
| 304 | row.cells[c].block_id = block_id; |
| 305 | row.cells[c].position = num_nonzeros_; |
| 306 | num_nonzeros_ += m_row.block.size * m_bs->cols[block_id].size; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | if (num_nonzeros_ > max_num_nonzeros_) { |
| 311 | double* new_values = new double[num_nonzeros_]; |
| 312 | std::copy(values_.get(), values_.get() + old_num_nonzeros, new_values); |
| 313 | values_.reset(new_values); |
| 314 | max_num_nonzeros_ = num_nonzeros_; |
| 315 | } |
| 316 | |
| 317 | std::copy(m.values(), |
| 318 | m.values() + m.num_nonzeros(), |
| 319 | values_.get() + old_num_nonzeros); |
| 320 | } |
| 321 | |
| 322 | void BlockSparseMatrix::DeleteRowBlocks(const int delta_row_blocks) { |
| 323 | const int num_row_blocks = block_structure_->rows.size(); |
| 324 | int delta_num_nonzeros = 0; |
| 325 | int delta_num_rows = 0; |
| 326 | const std::vector<Block>& column_blocks = block_structure_->cols; |
| 327 | for (int i = 0; i < delta_row_blocks; ++i) { |
| 328 | const CompressedRow& row = block_structure_->rows[num_row_blocks - i - 1]; |
| 329 | delta_num_rows += row.block.size; |
| 330 | for (int c = 0; c < row.cells.size(); ++c) { |
| 331 | const Cell& cell = row.cells[c]; |
| 332 | delta_num_nonzeros += row.block.size * column_blocks[cell.block_id].size; |
| 333 | } |
| 334 | } |
| 335 | num_nonzeros_ -= delta_num_nonzeros; |
| 336 | num_rows_ -= delta_num_rows; |
| 337 | block_structure_->rows.resize(num_row_blocks - delta_row_blocks); |
| 338 | } |
| 339 | |
| 340 | BlockSparseMatrix* BlockSparseMatrix::CreateRandomMatrix( |
| 341 | const BlockSparseMatrix::RandomMatrixOptions& options) { |
| 342 | CHECK_GT(options.num_row_blocks, 0); |
| 343 | CHECK_GT(options.min_row_block_size, 0); |
| 344 | CHECK_GT(options.max_row_block_size, 0); |
| 345 | CHECK_LE(options.min_row_block_size, options.max_row_block_size); |
| 346 | CHECK_GT(options.block_density, 0.0); |
| 347 | CHECK_LE(options.block_density, 1.0); |
| 348 | |
| 349 | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure(); |
| 350 | if (options.col_blocks.empty()) { |
| 351 | CHECK_GT(options.num_col_blocks, 0); |
| 352 | CHECK_GT(options.min_col_block_size, 0); |
| 353 | CHECK_GT(options.max_col_block_size, 0); |
| 354 | CHECK_LE(options.min_col_block_size, options.max_col_block_size); |
| 355 | |
| 356 | // Generate the col block structure. |
| 357 | int col_block_position = 0; |
| 358 | for (int i = 0; i < options.num_col_blocks; ++i) { |
| 359 | // Generate a random integer in [min_col_block_size, max_col_block_size] |
| 360 | const int delta_block_size = |
| 361 | Uniform(options.max_col_block_size - options.min_col_block_size); |
| 362 | const int col_block_size = options.min_col_block_size + delta_block_size; |
| 363 | bs->cols.push_back(Block(col_block_size, col_block_position)); |
| 364 | col_block_position += col_block_size; |
| 365 | } |
| 366 | } else { |
| 367 | bs->cols = options.col_blocks; |
| 368 | } |
| 369 | |
| 370 | bool matrix_has_blocks = false; |
| 371 | while (!matrix_has_blocks) { |
| 372 | VLOG(1) << "Clearing"; |
| 373 | bs->rows.clear(); |
| 374 | int row_block_position = 0; |
| 375 | int value_position = 0; |
| 376 | for (int r = 0; r < options.num_row_blocks; ++r) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 377 | const int delta_block_size = |
| 378 | Uniform(options.max_row_block_size - options.min_row_block_size); |
| 379 | const int row_block_size = options.min_row_block_size + delta_block_size; |
| 380 | bs->rows.push_back(CompressedRow()); |
| 381 | CompressedRow& row = bs->rows.back(); |
| 382 | row.block.size = row_block_size; |
| 383 | row.block.position = row_block_position; |
| 384 | row_block_position += row_block_size; |
| 385 | for (int c = 0; c < bs->cols.size(); ++c) { |
| 386 | if (RandDouble() > options.block_density) continue; |
| 387 | |
| 388 | row.cells.push_back(Cell()); |
| 389 | Cell& cell = row.cells.back(); |
| 390 | cell.block_id = c; |
| 391 | cell.position = value_position; |
| 392 | value_position += row_block_size * bs->cols[c].size; |
| 393 | matrix_has_blocks = true; |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | BlockSparseMatrix* matrix = new BlockSparseMatrix(bs); |
| 399 | double* values = matrix->mutable_values(); |
| 400 | for (int i = 0; i < matrix->num_nonzeros(); ++i) { |
| 401 | values[i] = RandNormal(); |
| 402 | } |
| 403 | |
| 404 | return matrix; |
| 405 | } |
| 406 | |
| 407 | } // namespace internal |
| 408 | } // namespace ceres |