Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2020 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: darius.rueckert@fau.de (Darius Rueckert) |
| 30 | |
| 31 | #include <memory> |
| 32 | #include <random> |
| 33 | #include <utility> |
| 34 | |
| 35 | #include "benchmark/benchmark.h" |
| 36 | #include "ceres/autodiff_benchmarks/brdf_cost_function.h" |
| 37 | #include "ceres/autodiff_benchmarks/constant_cost_function.h" |
| 38 | #include "ceres/autodiff_benchmarks/linear_cost_functions.h" |
| 39 | #include "ceres/autodiff_benchmarks/photometric_error.h" |
| 40 | #include "ceres/autodiff_benchmarks/relative_pose_error.h" |
| 41 | #include "ceres/autodiff_benchmarks/snavely_reprojection_error.h" |
| 42 | #include "ceres/ceres.h" |
| 43 | |
| 44 | namespace ceres { |
| 45 | |
| 46 | enum Dynamic { kNotDynamic, kDynamic }; |
| 47 | |
| 48 | // Transforms a static functor into a dynamic one. |
| 49 | template <typename CostFunctionType, int kNumParameterBlocks> |
| 50 | class ToDynamic { |
| 51 | public: |
| 52 | template <typename... _Args> |
| 53 | explicit ToDynamic(_Args&&... __args) |
| 54 | : cost_function_(std::forward<_Args>(__args)...) {} |
| 55 | |
| 56 | template <typename T> |
| 57 | bool operator()(const T* const* parameters, T* residuals) const { |
| 58 | return Apply( |
| 59 | parameters, residuals, std::make_index_sequence<kNumParameterBlocks>()); |
| 60 | } |
| 61 | |
| 62 | private: |
| 63 | template <typename T, size_t... Indices> |
| 64 | bool Apply(const T* const* parameters, |
| 65 | T* residuals, |
| 66 | std::index_sequence<Indices...>) const { |
| 67 | return cost_function_(parameters[Indices]..., residuals); |
| 68 | } |
| 69 | |
| 70 | CostFunctionType cost_function_; |
| 71 | }; |
| 72 | |
| 73 | template <int kParameterBlockSize> |
| 74 | static void BM_ConstantAnalytic(benchmark::State& state) { |
| 75 | constexpr int num_residuals = 1; |
| 76 | std::array<double, kParameterBlockSize> parameters_values; |
| 77 | std::iota(parameters_values.begin(), parameters_values.end(), 0); |
| 78 | double* parameters[] = {parameters_values.data()}; |
| 79 | |
| 80 | std::array<double, num_residuals> residuals; |
| 81 | |
| 82 | std::array<double, num_residuals * kParameterBlockSize> jacobian_values; |
| 83 | double* jacobians[] = {jacobian_values.data()}; |
| 84 | |
| 85 | std::unique_ptr<ceres::CostFunction> cost_function( |
| 86 | new AnalyticConstantCostFunction<kParameterBlockSize>()); |
| 87 | |
| 88 | for (auto _ : state) { |
| 89 | cost_function->Evaluate(parameters, residuals.data(), jacobians); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | // Helpers for CostFunctionFactory. |
| 94 | template <typename DynamicCostFunctionType> |
| 95 | void AddParameterBlocks(DynamicCostFunctionType*) {} |
| 96 | |
| 97 | template <int HeadN, int... TailNs, typename DynamicCostFunctionType> |
| 98 | void AddParameterBlocks(DynamicCostFunctionType* dynamic_function) { |
| 99 | dynamic_function->AddParameterBlock(HeadN); |
| 100 | AddParameterBlocks<TailNs...>(dynamic_function); |
| 101 | } |
| 102 | |
| 103 | // Creates an autodiff cost function wrapping `CostFunctor`, with |
| 104 | // `kNumResiduals` residuals and parameter blocks with sized `Ns..`. |
| 105 | // Depending on `kIsDynamic`, either a static or dynamic cost function is |
| 106 | // created. |
| 107 | // `args` are forwarded to the `CostFunctor` constructor. |
| 108 | template <Dynamic kIsDynamic> |
| 109 | struct CostFunctionFactory {}; |
| 110 | |
| 111 | template <> |
| 112 | struct CostFunctionFactory<kNotDynamic> { |
| 113 | template <typename CostFunctor, |
| 114 | int kNumResiduals, |
| 115 | int... Ns, |
| 116 | typename... Args> |
| 117 | static std::unique_ptr<ceres::CostFunction> Create(Args&&... args) { |
| 118 | return std::make_unique< |
| 119 | ceres::AutoDiffCostFunction<CostFunctor, kNumResiduals, Ns...>>( |
| 120 | new CostFunctor(std::forward<Args>(args)...)); |
| 121 | } |
| 122 | }; |
| 123 | |
| 124 | template <> |
| 125 | struct CostFunctionFactory<kDynamic> { |
| 126 | template <typename CostFunctor, |
| 127 | int kNumResiduals, |
| 128 | int... Ns, |
| 129 | typename... Args> |
| 130 | static std::unique_ptr<ceres::CostFunction> Create(Args&&... args) { |
| 131 | constexpr const int kNumParameterBlocks = sizeof...(Ns); |
| 132 | auto dynamic_function = std::make_unique<ceres::DynamicAutoDiffCostFunction< |
| 133 | ToDynamic<CostFunctor, kNumParameterBlocks>>>( |
| 134 | new ToDynamic<CostFunctor, kNumParameterBlocks>( |
| 135 | std::forward<Args>(args)...)); |
| 136 | dynamic_function->SetNumResiduals(kNumResiduals); |
| 137 | AddParameterBlocks<Ns...>(dynamic_function.get()); |
| 138 | return dynamic_function; |
| 139 | } |
| 140 | }; |
| 141 | |
| 142 | template <int kParameterBlockSize, Dynamic kIsDynamic> |
| 143 | static void BM_ConstantAutodiff(benchmark::State& state) { |
| 144 | constexpr int num_residuals = 1; |
| 145 | std::array<double, kParameterBlockSize> parameters_values; |
| 146 | std::iota(parameters_values.begin(), parameters_values.end(), 0); |
| 147 | double* parameters[] = {parameters_values.data()}; |
| 148 | |
| 149 | std::array<double, num_residuals> residuals; |
| 150 | |
| 151 | std::array<double, num_residuals * kParameterBlockSize> jacobian_values; |
| 152 | double* jacobians[] = {jacobian_values.data()}; |
| 153 | |
| 154 | std::unique_ptr<ceres::CostFunction> cost_function = |
| 155 | CostFunctionFactory<kIsDynamic>:: |
| 156 | template Create<ConstantCostFunction<kParameterBlockSize>, 1, 1>(); |
| 157 | |
| 158 | for (auto _ : state) { |
| 159 | cost_function->Evaluate(parameters, residuals.data(), jacobians); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 1); |
| 164 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 1, kNotDynamic); |
| 165 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 1, kDynamic); |
| 166 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 10); |
| 167 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 10, kNotDynamic); |
| 168 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 10, kDynamic); |
| 169 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 20); |
| 170 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 20, kNotDynamic); |
| 171 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 20, kDynamic); |
| 172 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 30); |
| 173 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 30, kNotDynamic); |
| 174 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 30, kDynamic); |
| 175 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 40); |
| 176 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 40, kNotDynamic); |
| 177 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 40, kDynamic); |
| 178 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 50); |
| 179 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 50, kNotDynamic); |
| 180 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 50, kDynamic); |
| 181 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 60); |
| 182 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 60, kNotDynamic); |
| 183 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 60, kDynamic); |
| 184 | |
| 185 | template <Dynamic kIsDynamic> |
| 186 | static void BM_Linear1AutoDiff(benchmark::State& state) { |
| 187 | double parameter_block1[] = {1.}; |
| 188 | double* parameters[] = {parameter_block1}; |
| 189 | |
| 190 | double jacobian1[1]; |
| 191 | double residuals[1]; |
| 192 | double* jacobians[] = {jacobian1}; |
| 193 | |
| 194 | std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| 195 | kIsDynamic>::template Create<Linear1CostFunction, 1, 1>(); |
| 196 | |
| 197 | for (auto _ : state) { |
| 198 | cost_function->Evaluate( |
| 199 | parameters, residuals, state.range(0) ? jacobians : nullptr); |
| 200 | } |
| 201 | } |
| 202 | BENCHMARK_TEMPLATE(BM_Linear1AutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| 203 | BENCHMARK_TEMPLATE(BM_Linear1AutoDiff, kDynamic)->Arg(0)->Arg(1); |
| 204 | |
| 205 | template <Dynamic kIsDynamic> |
| 206 | static void BM_Linear10AutoDiff(benchmark::State& state) { |
| 207 | double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}; |
| 208 | double* parameters[] = {parameter_block1}; |
| 209 | |
| 210 | double jacobian1[10 * 10]; |
| 211 | double residuals[10]; |
| 212 | double* jacobians[] = {jacobian1}; |
| 213 | |
| 214 | std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| 215 | kIsDynamic>::template Create<Linear10CostFunction, 10, 10>(); |
| 216 | |
| 217 | for (auto _ : state) { |
| 218 | cost_function->Evaluate( |
| 219 | parameters, residuals, state.range(0) ? jacobians : nullptr); |
| 220 | } |
| 221 | } |
| 222 | BENCHMARK_TEMPLATE(BM_Linear10AutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| 223 | BENCHMARK_TEMPLATE(BM_Linear10AutoDiff, kDynamic)->Arg(0)->Arg(1); |
| 224 | |
| 225 | // From the NIST problem collection. |
| 226 | struct Rat43CostFunctor { |
| 227 | Rat43CostFunctor(const double x, const double y) : x_(x), y_(y) {} |
| 228 | |
| 229 | template <typename T> |
| 230 | inline bool operator()(const T* parameters, T* residuals) const { |
| 231 | const T& b1 = parameters[0]; |
| 232 | const T& b2 = parameters[1]; |
| 233 | const T& b3 = parameters[2]; |
| 234 | const T& b4 = parameters[3]; |
| 235 | residuals[0] = b1 * pow(1.0 + exp(b2 - b3 * x_), -1.0 / b4) - y_; |
| 236 | return true; |
| 237 | } |
| 238 | |
| 239 | static constexpr int kNumParameterBlocks = 1; |
| 240 | |
| 241 | private: |
| 242 | const double x_; |
| 243 | const double y_; |
| 244 | }; |
| 245 | |
| 246 | template <Dynamic kIsDynamic> |
| 247 | static void BM_Rat43AutoDiff(benchmark::State& state) { |
| 248 | double parameter_block1[] = {1., 2., 3., 4.}; |
| 249 | double* parameters[] = {parameter_block1}; |
| 250 | |
| 251 | double jacobian1[] = {0.0, 0.0, 0.0, 0.0}; |
| 252 | double residuals; |
| 253 | double* jacobians[] = {jacobian1}; |
| 254 | const double x = 0.2; |
| 255 | const double y = 0.3; |
| 256 | std::unique_ptr<ceres::CostFunction> cost_function = |
| 257 | CostFunctionFactory<kIsDynamic>::template Create<Rat43CostFunctor, 1, 4>( |
| 258 | x, y); |
| 259 | |
| 260 | for (auto _ : state) { |
| 261 | cost_function->Evaluate( |
| 262 | parameters, &residuals, state.range(0) ? jacobians : nullptr); |
| 263 | } |
| 264 | } |
| 265 | BENCHMARK_TEMPLATE(BM_Rat43AutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| 266 | BENCHMARK_TEMPLATE(BM_Rat43AutoDiff, kDynamic)->Arg(0)->Arg(1); |
| 267 | |
| 268 | template <Dynamic kIsDynamic> |
| 269 | static void BM_SnavelyReprojectionAutoDiff(benchmark::State& state) { |
| 270 | double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9.}; |
| 271 | double parameter_block2[] = {1., 2., 3.}; |
| 272 | double* parameters[] = {parameter_block1, parameter_block2}; |
| 273 | |
| 274 | double jacobian1[2 * 9]; |
| 275 | double jacobian2[2 * 3]; |
| 276 | double residuals[2]; |
| 277 | double* jacobians[] = {jacobian1, jacobian2}; |
| 278 | |
| 279 | const double x = 0.2; |
| 280 | const double y = 0.3; |
| 281 | std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| 282 | kIsDynamic>::template Create<SnavelyReprojectionError, 2, 9, 3>(x, y); |
| 283 | |
| 284 | for (auto _ : state) { |
| 285 | cost_function->Evaluate( |
| 286 | parameters, residuals, state.range(0) ? jacobians : nullptr); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | BENCHMARK_TEMPLATE(BM_SnavelyReprojectionAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| 291 | BENCHMARK_TEMPLATE(BM_SnavelyReprojectionAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| 292 | |
| 293 | template <Dynamic kIsDynamic> |
| 294 | static void BM_PhotometricAutoDiff(benchmark::State& state) { |
| 295 | constexpr int PATCH_SIZE = 8; |
| 296 | |
| 297 | using FunctorType = PhotometricError<PATCH_SIZE>; |
| 298 | using ImageType = Eigen::Matrix<uint8_t, 128, 128, Eigen::RowMajor>; |
| 299 | |
| 300 | // Prepare parameter / residual / jacobian blocks. |
| 301 | double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.}; |
| 302 | double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1}; |
| 303 | double parameter_block3[] = {1.}; |
| 304 | double* parameters[] = {parameter_block1, parameter_block2, parameter_block3}; |
| 305 | |
| 306 | Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize(); |
| 307 | Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize(); |
| 308 | |
| 309 | double jacobian1[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE]; |
| 310 | double jacobian2[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE]; |
| 311 | double jacobian3[FunctorType::PATCH_SIZE * FunctorType::POINT_SIZE]; |
| 312 | double residuals[FunctorType::PATCH_SIZE]; |
| 313 | double* jacobians[] = {jacobian1, jacobian2, jacobian3}; |
| 314 | |
| 315 | // Prepare data (fixed seed for repeatability). |
| 316 | std::mt19937::result_type seed = 42; |
| 317 | std::mt19937 gen(seed); |
| 318 | std::uniform_real_distribution<double> uniform01(0.0, 1.0); |
| 319 | std::uniform_int_distribution<unsigned int> uniform0255(0, 255); |
| 320 | |
| 321 | FunctorType::Patch<double> intensities_host = |
| 322 | FunctorType::Patch<double>::NullaryExpr( |
| 323 | [&]() { return uniform0255(gen); }); |
| 324 | |
| 325 | // Set bearing vector's z component to 1, i.e. pointing away from the camera, |
| 326 | // to ensure they are (likely) in the domain of the projection function (given |
| 327 | // a small rotation between host and target frame). |
| 328 | FunctorType::PatchVectors<double> bearings_host = |
| 329 | FunctorType::PatchVectors<double>::NullaryExpr( |
| 330 | [&]() { return uniform01(gen); }); |
| 331 | bearings_host.row(2).array() = 1; |
| 332 | bearings_host.colwise().normalize(); |
| 333 | |
| 334 | ImageType image = ImageType::NullaryExpr( |
| 335 | [&]() { return static_cast<uint8_t>(uniform0255(gen)); }); |
| 336 | FunctorType::Grid grid(image.data(), 0, image.rows(), 0, image.cols()); |
| 337 | FunctorType::Interpolator image_target(grid); |
| 338 | |
| 339 | FunctorType::Intrinsics intrinsics; |
| 340 | intrinsics << 128, 128, 1, -1, 0.5, 0.5; |
| 341 | |
| 342 | std::unique_ptr<ceres::CostFunction> cost_function = |
| 343 | CostFunctionFactory<kIsDynamic>::template Create<FunctorType, |
| 344 | FunctorType::PATCH_SIZE, |
| 345 | FunctorType::POSE_SIZE, |
| 346 | FunctorType::POSE_SIZE, |
| 347 | FunctorType::POINT_SIZE>( |
| 348 | intensities_host, bearings_host, image_target, intrinsics); |
| 349 | |
| 350 | for (auto _ : state) { |
| 351 | cost_function->Evaluate( |
| 352 | parameters, residuals, state.range(0) ? jacobians : nullptr); |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | BENCHMARK_TEMPLATE(BM_PhotometricAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| 357 | BENCHMARK_TEMPLATE(BM_PhotometricAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| 358 | |
| 359 | template <Dynamic kIsDynamic> |
| 360 | static void BM_RelativePoseAutoDiff(benchmark::State& state) { |
| 361 | using FunctorType = RelativePoseError; |
| 362 | |
| 363 | double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.}; |
| 364 | double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1}; |
| 365 | double* parameters[] = {parameter_block1, parameter_block2}; |
| 366 | |
| 367 | Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize(); |
| 368 | Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize(); |
| 369 | |
| 370 | double jacobian1[6 * 7]; |
| 371 | double jacobian2[6 * 7]; |
| 372 | double residuals[6]; |
| 373 | double* jacobians[] = {jacobian1, jacobian2}; |
| 374 | |
| 375 | Eigen::Quaterniond q_i_j = Eigen::Quaterniond(1, 2, 3, 4).normalized(); |
| 376 | Eigen::Vector3d t_i_j(1, 2, 3); |
| 377 | |
| 378 | std::unique_ptr<ceres::CostFunction> cost_function = |
| 379 | CostFunctionFactory<kIsDynamic>::template Create<FunctorType, 6, 7, 7>( |
| 380 | q_i_j, t_i_j); |
| 381 | |
| 382 | for (auto _ : state) { |
| 383 | cost_function->Evaluate( |
| 384 | parameters, residuals, state.range(0) ? jacobians : nullptr); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | BENCHMARK_TEMPLATE(BM_RelativePoseAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| 389 | BENCHMARK_TEMPLATE(BM_RelativePoseAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| 390 | |
| 391 | template <Dynamic kIsDynamic> |
| 392 | static void BM_BrdfAutoDiff(benchmark::State& state) { |
| 393 | using FunctorType = Brdf; |
| 394 | |
| 395 | double material[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}; |
| 396 | auto c = Eigen::Vector3d(0.1, 0.2, 0.3); |
| 397 | auto n = Eigen::Vector3d(-0.1, 0.5, 0.2).normalized(); |
| 398 | auto v = Eigen::Vector3d(0.5, -0.2, 0.9).normalized(); |
| 399 | auto l = Eigen::Vector3d(-0.3, 0.4, -0.3).normalized(); |
| 400 | auto x = Eigen::Vector3d(0.5, 0.7, -0.1).normalized(); |
| 401 | auto y = Eigen::Vector3d(0.2, -0.2, -0.2).normalized(); |
| 402 | |
| 403 | double* parameters[7] = { |
| 404 | material, c.data(), n.data(), v.data(), l.data(), x.data(), y.data()}; |
| 405 | |
| 406 | double jacobian[(10 + 6 * 3) * 3]; |
| 407 | double residuals[3]; |
| 408 | // clang-format off |
| 409 | double* jacobians[7] = { |
| 410 | jacobian + 0, jacobian + 10 * 3, jacobian + 13 * 3, |
| 411 | jacobian + 16 * 3, jacobian + 19 * 3, jacobian + 22 * 3, |
| 412 | jacobian + 25 * 3, |
| 413 | }; |
| 414 | // clang-format on |
| 415 | |
| 416 | std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| 417 | kIsDynamic>::template Create<FunctorType, 3, 10, 3, 3, 3, 3, 3, 3>(); |
| 418 | |
| 419 | for (auto _ : state) { |
| 420 | cost_function->Evaluate( |
| 421 | parameters, residuals, state.range(0) ? jacobians : nullptr); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | BENCHMARK_TEMPLATE(BM_BrdfAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| 426 | BENCHMARK_TEMPLATE(BM_BrdfAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| 427 | |
| 428 | } // namespace ceres |
| 429 | |
| 430 | BENCHMARK_MAIN(); |