blob: 7aabf7dfce1f53eccf3a2d2ddf1aa7a25a32c051 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh1d1e6ea2020-12-23 21:56:30 -08002// Copyright 2019 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// The LossFunction interface is the way users describe how residuals
32// are converted to cost terms for the overall problem cost function.
33// For the exact manner in which loss functions are converted to the
34// overall cost for a problem, see problem.h.
35//
36// For least squares problem where there are no outliers and standard
37// squared loss is expected, it is not necessary to create a loss
38// function; instead passing a NULL to the problem when adding
39// residuals implies a standard squared loss.
40//
41// For least squares problems where the minimization may encounter
42// input terms that contain outliers, that is, completely bogus
43// measurements, it is important to use a loss function that reduces
44// their associated penalty.
45//
46// Consider a structure from motion problem. The unknowns are 3D
47// points and camera parameters, and the measurements are image
48// coordinates describing the expected reprojected position for a
49// point in a camera. For example, we want to model the geometry of a
50// street scene with fire hydrants and cars, observed by a moving
51// camera with unknown parameters, and the only 3D points we care
52// about are the pointy tippy-tops of the fire hydrants. Our magic
53// image processing algorithm, which is responsible for producing the
54// measurements that are input to Ceres, has found and matched all
55// such tippy-tops in all image frames, except that in one of the
56// frame it mistook a car's headlight for a hydrant. If we didn't do
57// anything special (i.e. if we used a basic quadratic loss), the
58// residual for the erroneous measurement will result in extreme error
59// due to the quadratic nature of squared loss. This results in the
60// entire solution getting pulled away from the optimum to reduce
61// the large error that would otherwise be attributed to the wrong
62// measurement.
63//
64// Using a robust loss function, the cost for large residuals is
65// reduced. In the example above, this leads to outlier terms getting
66// downweighted so they do not overly influence the final solution.
67//
68// What cost function is best?
69//
70// In general, there isn't a principled way to select a robust loss
71// function. The authors suggest starting with a non-robust cost, then
72// only experimenting with robust loss functions if standard squared
73// loss doesn't work.
74
75#ifndef CERES_PUBLIC_LOSS_FUNCTION_H_
76#define CERES_PUBLIC_LOSS_FUNCTION_H_
77
78#include <memory>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080079
Austin Schuh70cc9552019-01-21 19:46:48 -080080#include "ceres/internal/disable_warnings.h"
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080081#include "ceres/types.h"
82#include "glog/logging.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080083
84namespace ceres {
85
86class CERES_EXPORT LossFunction {
87 public:
88 virtual ~LossFunction() {}
89
90 // For a residual vector with squared 2-norm 'sq_norm', this method
91 // is required to fill in the value and derivatives of the loss
92 // function (rho in this example):
93 //
94 // out[0] = rho(sq_norm),
95 // out[1] = rho'(sq_norm),
96 // out[2] = rho''(sq_norm),
97 //
98 // Here the convention is that the contribution of a term to the
99 // cost function is given by 1/2 rho(s), where
100 //
101 // s = ||residuals||^2.
102 //
103 // Calling the method with a negative value of 's' is an error and
104 // the implementations are not required to handle that case.
105 //
106 // Most sane choices of rho() satisfy:
107 //
108 // rho(0) = 0,
109 // rho'(0) = 1,
110 // rho'(s) < 1 in outlier region,
111 // rho''(s) < 0 in outlier region,
112 //
113 // so that they mimic the least squares cost for small residuals.
114 virtual void Evaluate(double sq_norm, double out[3]) const = 0;
115};
116
117// Some common implementations follow below.
118//
119// Note: in the region of interest (i.e. s < 3) we have:
120// TrivialLoss >= HuberLoss >= SoftLOneLoss >= CauchyLoss
121
Austin Schuh70cc9552019-01-21 19:46:48 -0800122// This corresponds to no robustification.
123//
124// rho(s) = s
125//
126// At s = 0: rho = [0, 1, 0].
127//
128// It is not normally necessary to use this, as passing NULL for the
129// loss function when building the problem accomplishes the same
130// thing.
131class CERES_EXPORT TrivialLoss : public LossFunction {
132 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800133 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800134};
135
136// Scaling
137// -------
138// Given one robustifier
139// s -> rho(s)
140// one can change the length scale at which robustification takes
141// place, by adding a scale factor 'a' as follows:
142//
143// s -> a^2 rho(s / a^2).
144//
145// The first and second derivatives are:
146//
147// s -> rho'(s / a^2),
148// s -> (1 / a^2) rho''(s / a^2),
149//
150// but the behaviour near s = 0 is the same as the original function,
151// i.e.
152//
153// rho(s) = s + higher order terms,
154// a^2 rho(s / a^2) = s + higher order terms.
155//
156// The scalar 'a' should be positive.
157//
158// The reason for the appearance of squaring is that 'a' is in the
159// units of the residual vector norm whereas 's' is a squared
160// norm. For applications it is more convenient to specify 'a' than
161// its square. The commonly used robustifiers below are described in
162// un-scaled format (a = 1) but their implementations work for any
163// non-zero value of 'a'.
164
165// Huber.
166//
167// rho(s) = s for s <= 1,
168// rho(s) = 2 sqrt(s) - 1 for s >= 1.
169//
170// At s = 0: rho = [0, 1, 0].
171//
172// The scaling parameter 'a' corresponds to 'delta' on this page:
173// http://en.wikipedia.org/wiki/Huber_Loss_Function
174class CERES_EXPORT HuberLoss : public LossFunction {
175 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800176 explicit HuberLoss(double a) : a_(a), b_(a * a) {}
177 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800178
179 private:
180 const double a_;
181 // b = a^2.
182 const double b_;
183};
184
185// Soft L1, similar to Huber but smooth.
186//
187// rho(s) = 2 (sqrt(1 + s) - 1).
188//
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800189// At s = 0: rho = [0, 1, -1 / (2 * a^2)].
Austin Schuh70cc9552019-01-21 19:46:48 -0800190class CERES_EXPORT SoftLOneLoss : public LossFunction {
191 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800192 explicit SoftLOneLoss(double a) : b_(a * a), c_(1 / b_) {}
193 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800194
195 private:
196 // b = a^2.
197 const double b_;
198 // c = 1 / a^2.
199 const double c_;
200};
201
202// Inspired by the Cauchy distribution
203//
204// rho(s) = log(1 + s).
205//
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800206// At s = 0: rho = [0, 1, -1 / a^2].
Austin Schuh70cc9552019-01-21 19:46:48 -0800207class CERES_EXPORT CauchyLoss : public LossFunction {
208 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800209 explicit CauchyLoss(double a) : b_(a * a), c_(1 / b_) {}
210 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800211
212 private:
213 // b = a^2.
214 const double b_;
215 // c = 1 / a^2.
216 const double c_;
217};
218
219// Loss that is capped beyond a certain level using the arc-tangent function.
220// The scaling parameter 'a' determines the level where falloff occurs.
221// For costs much smaller than 'a', the loss function is linear and behaves like
222// TrivialLoss, and for values much larger than 'a' the value asymptotically
223// approaches the constant value of a * PI / 2.
224//
225// rho(s) = a atan(s / a).
226//
227// At s = 0: rho = [0, 1, 0].
228class CERES_EXPORT ArctanLoss : public LossFunction {
229 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800230 explicit ArctanLoss(double a) : a_(a), b_(1 / (a * a)) {}
231 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800232
233 private:
234 const double a_;
235 // b = 1 / a^2.
236 const double b_;
237};
238
239// Loss function that maps to approximately zero cost in a range around the
240// origin, and reverts to linear in error (quadratic in cost) beyond this range.
241// The tolerance parameter 'a' sets the nominal point at which the
242// transition occurs, and the transition size parameter 'b' sets the nominal
243// distance over which most of the transition occurs. Both a and b must be
244// greater than zero, and typically b will be set to a fraction of a.
245// The slope rho'[s] varies smoothly from about 0 at s <= a - b to
246// about 1 at s >= a + b.
247//
248// The term is computed as:
249//
250// rho(s) = b log(1 + exp((s - a) / b)) - c0.
251//
252// where c0 is chosen so that rho(0) == 0
253//
254// c0 = b log(1 + exp(-a / b)
255//
256// This has the following useful properties:
257//
258// rho(s) == 0 for s = 0
259// rho'(s) ~= 0 for s << a - b
260// rho'(s) ~= 1 for s >> a + b
261// rho''(s) > 0 for all s
262//
263// In addition, all derivatives are continuous, and the curvature is
264// concentrated in the range a - b to a + b.
265//
266// At s = 0: rho = [0, ~0, ~0].
267class CERES_EXPORT TolerantLoss : public LossFunction {
268 public:
269 explicit TolerantLoss(double a, double b);
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800270 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800271
272 private:
273 const double a_, b_, c_;
274};
275
276// This is the Tukey biweight loss function which aggressively
277// attempts to suppress large errors.
278//
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800279// The term is computed as follows where the equations are scaled by a
280// factor of 2 because the cost function is given by 1/2 rho(s):
Austin Schuh70cc9552019-01-21 19:46:48 -0800281//
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800282// rho(s) = a^2 / 3 * (1 - (1 - s / a^2)^3 ) for s <= a^2,
283// rho(s) = a^2 / 3 for s > a^2.
Austin Schuh70cc9552019-01-21 19:46:48 -0800284//
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800285// At s = 0: rho = [0, 1, -2 / a^2]
Austin Schuh70cc9552019-01-21 19:46:48 -0800286class CERES_EXPORT TukeyLoss : public ceres::LossFunction {
287 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800288 explicit TukeyLoss(double a) : a_squared_(a * a) {}
289 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800290
291 private:
292 const double a_squared_;
293};
294
295// Composition of two loss functions. The error is the result of first
296// evaluating g followed by f to yield the composition f(g(s)).
297// The loss functions must not be NULL.
298class CERES_EXPORT ComposedLoss : public LossFunction {
299 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800300 explicit ComposedLoss(const LossFunction* f,
301 Ownership ownership_f,
302 const LossFunction* g,
303 Ownership ownership_g);
Austin Schuh70cc9552019-01-21 19:46:48 -0800304 virtual ~ComposedLoss();
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800305 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800306
307 private:
308 std::unique_ptr<const LossFunction> f_, g_;
309 const Ownership ownership_f_, ownership_g_;
310};
311
312// The discussion above has to do with length scaling: it affects the space
313// in which s is measured. Sometimes you want to simply scale the output
314// value of the robustifier. For example, you might want to weight
315// different error terms differently (e.g., weight pixel reprojection
316// errors differently from terrain errors).
317//
318// If rho is the wrapped robustifier, then this simply outputs
319// s -> a * rho(s)
320//
321// The first and second derivatives are, not surprisingly
322// s -> a * rho'(s)
323// s -> a * rho''(s)
324//
325// Since we treat the a NULL Loss function as the Identity loss
326// function, rho = NULL is a valid input and will result in the input
327// being scaled by a. This provides a simple way of implementing a
328// scaled ResidualBlock.
329class CERES_EXPORT ScaledLoss : public LossFunction {
330 public:
331 // Constructs a ScaledLoss wrapping another loss function. Takes
332 // ownership of the wrapped loss function or not depending on the
333 // ownership parameter.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800334 ScaledLoss(const LossFunction* rho, double a, Ownership ownership)
335 : rho_(rho), a_(a), ownership_(ownership) {}
Austin Schuh70cc9552019-01-21 19:46:48 -0800336 ScaledLoss(const ScaledLoss&) = delete;
337 void operator=(const ScaledLoss&) = delete;
338
339 virtual ~ScaledLoss() {
340 if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
341 rho_.release();
342 }
343 }
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800344 void Evaluate(double, double*) const override;
Austin Schuh70cc9552019-01-21 19:46:48 -0800345
346 private:
347 std::unique_ptr<const LossFunction> rho_;
348 const double a_;
349 const Ownership ownership_;
350};
351
352// Sometimes after the optimization problem has been constructed, we
353// wish to mutate the scale of the loss function. For example, when
354// performing estimation from data which has substantial outliers,
355// convergence can be improved by starting out with a large scale,
356// optimizing the problem and then reducing the scale. This can have
357// better convergence behaviour than just using a loss function with a
358// small scale.
359//
360// This templated class allows the user to implement a loss function
361// whose scale can be mutated after an optimization problem has been
362// constructed.
363//
364// Since we treat the a NULL Loss function as the Identity loss
365// function, rho = NULL is a valid input.
366//
367// Example usage
368//
369// Problem problem;
370//
371// // Add parameter blocks
372//
373// CostFunction* cost_function =
374// new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>(
375// new UW_Camera_Mapper(feature_x, feature_y));
376//
377// LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP);
378//
379// problem.AddResidualBlock(cost_function, loss_function, parameters);
380//
381// Solver::Options options;
382// Solger::Summary summary;
383//
384// Solve(options, &problem, &summary)
385//
386// loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP);
387//
388// Solve(options, &problem, &summary)
389//
390class CERES_EXPORT LossFunctionWrapper : public LossFunction {
391 public:
392 LossFunctionWrapper(LossFunction* rho, Ownership ownership)
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800393 : rho_(rho), ownership_(ownership) {}
Austin Schuh70cc9552019-01-21 19:46:48 -0800394
395 LossFunctionWrapper(const LossFunctionWrapper&) = delete;
396 void operator=(const LossFunctionWrapper&) = delete;
397
398 virtual ~LossFunctionWrapper() {
399 if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
400 rho_.release();
401 }
402 }
403
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800404 void Evaluate(double sq_norm, double out[3]) const override {
Austin Schuh70cc9552019-01-21 19:46:48 -0800405 if (rho_.get() == NULL) {
406 out[0] = sq_norm;
407 out[1] = 1.0;
408 out[2] = 0.0;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800409 } else {
Austin Schuh70cc9552019-01-21 19:46:48 -0800410 rho_->Evaluate(sq_norm, out);
411 }
412 }
413
414 void Reset(LossFunction* rho, Ownership ownership) {
415 if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
416 rho_.release();
417 }
418 rho_.reset(rho);
419 ownership_ = ownership;
420 }
421
422 private:
423 std::unique_ptr<const LossFunction> rho_;
424 Ownership ownership_;
425};
426
427} // namespace ceres
428
429#include "ceres/internal/reenable_warnings.h"
430
431#endif // CERES_PUBLIC_LOSS_FUNCTION_H_