blob: 7ccf6a88c32482b45744b8c69b94ae9f1fd55c6d [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh1d1e6ea2020-12-23 21:56:30 -08002// Copyright 2019 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30// mierle@gmail.com (Keir Mierle)
31
32#ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
33#define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
34
35#include <cmath>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080036#include <memory>
Austin Schuh70cc9552019-01-21 19:46:48 -080037#include <numeric>
38#include <vector>
39
Austin Schuh70cc9552019-01-21 19:46:48 -080040#include "ceres/dynamic_cost_function.h"
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080041#include "ceres/internal/fixed_array.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080042#include "ceres/jet.h"
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080043#include "ceres/types.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080044#include "glog/logging.h"
45
46namespace ceres {
47
48// This autodiff implementation differs from the one found in
49// autodiff_cost_function.h by supporting autodiff on cost functions
50// with variable numbers of parameters with variable sizes. With the
51// other implementation, all the sizes (both the number of parameter
52// blocks and the size of each block) must be fixed at compile time.
53//
54// The functor API differs slightly from the API for fixed size
55// autodiff; the expected interface for the cost functors is:
56//
57// struct MyCostFunctor {
58// template<typename T>
59// bool operator()(T const* const* parameters, T* residuals) const {
60// // Use parameters[i] to access the i'th parameter block.
61// }
62// };
63//
64// Since the sizing of the parameters is done at runtime, you must
65// also specify the sizes after creating the dynamic autodiff cost
66// function. For example:
67//
68// DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
69// new MyCostFunctor());
70// cost_function.AddParameterBlock(5);
71// cost_function.AddParameterBlock(10);
72// cost_function.SetNumResiduals(21);
73//
74// Under the hood, the implementation evaluates the cost function
75// multiple times, computing a small set of the derivatives (four by
76// default, controlled by the Stride template parameter) with each
77// pass. There is a tradeoff with the size of the passes; you may want
78// to experiment with the stride.
79template <typename CostFunctor, int Stride = 4>
80class DynamicAutoDiffCostFunction : public DynamicCostFunction {
81 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080082 // Takes ownership by default.
83 DynamicAutoDiffCostFunction(CostFunctor* functor,
84 Ownership ownership = TAKE_OWNERSHIP)
85 : functor_(functor), ownership_(ownership) {}
Austin Schuh70cc9552019-01-21 19:46:48 -080086
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080087 explicit DynamicAutoDiffCostFunction(DynamicAutoDiffCostFunction&& other)
88 : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
Austin Schuh70cc9552019-01-21 19:46:48 -080089
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080090 virtual ~DynamicAutoDiffCostFunction() {
91 // Manually release pointer if configured to not take ownership
92 // rather than deleting only if ownership is taken. This is to
93 // stay maximally compatible to old user code which may have
94 // forgotten to implement a virtual destructor, from when the
95 // AutoDiffCostFunction always took ownership.
96 if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
97 functor_.release();
98 }
99 }
100
101 bool Evaluate(double const* const* parameters,
102 double* residuals,
103 double** jacobians) const override {
Austin Schuh70cc9552019-01-21 19:46:48 -0800104 CHECK_GT(num_residuals(), 0)
105 << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "
106 << "before DynamicAutoDiffCostFunction::Evaluate().";
107
108 if (jacobians == NULL) {
109 return (*functor_)(parameters, residuals);
110 }
111
112 // The difficulty with Jets, as implemented in Ceres, is that they were
113 // originally designed for strictly compile-sized use. At this point, there
114 // is a large body of code that assumes inside a cost functor it is
115 // acceptable to do e.g. T(1.5) and get an appropriately sized jet back.
116 //
117 // Unfortunately, it is impossible to communicate the expected size of a
118 // dynamically sized jet to the static instantiations that existing code
119 // depends on.
120 //
121 // To work around this issue, the solution here is to evaluate the
122 // jacobians in a series of passes, each one computing Stride *
123 // num_residuals() derivatives. This is done with small, fixed-size jets.
124 const int num_parameter_blocks =
125 static_cast<int>(parameter_block_sizes().size());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800126 const int num_parameters = std::accumulate(
127 parameter_block_sizes().begin(), parameter_block_sizes().end(), 0);
Austin Schuh70cc9552019-01-21 19:46:48 -0800128
129 // Allocate scratch space for the strided evaluation.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800130 using JetT = Jet<double, Stride>;
131 internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> input_jets(
132 num_parameters);
133 internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> output_jets(
134 num_residuals());
Austin Schuh70cc9552019-01-21 19:46:48 -0800135
136 // Make the parameter pack that is sent to the functor (reused).
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800137 internal::FixedArray<Jet<double, Stride>*> jet_parameters(
138 num_parameter_blocks, nullptr);
Austin Schuh70cc9552019-01-21 19:46:48 -0800139 int num_active_parameters = 0;
140
141 // To handle constant parameters between non-constant parameter blocks, the
142 // start position --- a raw parameter index --- of each contiguous block of
143 // non-constant parameters is recorded in start_derivative_section.
144 std::vector<int> start_derivative_section;
145 bool in_derivative_section = false;
146 int parameter_cursor = 0;
147
148 // Discover the derivative sections and set the parameter values.
149 for (int i = 0; i < num_parameter_blocks; ++i) {
150 jet_parameters[i] = &input_jets[parameter_cursor];
151
152 const int parameter_block_size = parameter_block_sizes()[i];
153 if (jacobians[i] != NULL) {
154 if (!in_derivative_section) {
155 start_derivative_section.push_back(parameter_cursor);
156 in_derivative_section = true;
157 }
158
159 num_active_parameters += parameter_block_size;
160 } else {
161 in_derivative_section = false;
162 }
163
164 for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {
165 input_jets[parameter_cursor].a = parameters[i][j];
166 }
167 }
168
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800169 if (num_active_parameters == 0) {
170 return (*functor_)(parameters, residuals);
171 }
Austin Schuh70cc9552019-01-21 19:46:48 -0800172 // When `num_active_parameters % Stride != 0` then it can be the case
173 // that `active_parameter_count < Stride` while parameter_cursor is less
174 // than the total number of parameters and with no remaining non-constant
175 // parameter blocks. Pushing parameter_cursor (the total number of
176 // parameters) as a final entry to start_derivative_section is required
177 // because if a constant parameter block is encountered after the
178 // last non-constant block then current_derivative_section is incremented
179 // and would otherwise index an invalid position in
180 // start_derivative_section. Setting the final element to the total number
181 // of parameters means that this can only happen at most once in the loop
182 // below.
183 start_derivative_section.push_back(parameter_cursor);
184
185 // Evaluate all of the strides. Each stride is a chunk of the derivative to
186 // evaluate, typically some size proportional to the size of the SIMD
187 // registers of the CPU.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800188 int num_strides = static_cast<int>(
189 ceil(num_active_parameters / static_cast<float>(Stride)));
Austin Schuh70cc9552019-01-21 19:46:48 -0800190
191 int current_derivative_section = 0;
192 int current_derivative_section_cursor = 0;
193
194 for (int pass = 0; pass < num_strides; ++pass) {
195 // Set most of the jet components to zero, except for
196 // non-constant #Stride parameters.
197 const int initial_derivative_section = current_derivative_section;
198 const int initial_derivative_section_cursor =
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800199 current_derivative_section_cursor;
Austin Schuh70cc9552019-01-21 19:46:48 -0800200
201 int active_parameter_count = 0;
202 parameter_cursor = 0;
203
204 for (int i = 0; i < num_parameter_blocks; ++i) {
205 for (int j = 0; j < parameter_block_sizes()[i];
206 ++j, parameter_cursor++) {
207 input_jets[parameter_cursor].v.setZero();
208 if (active_parameter_count < Stride &&
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800209 parameter_cursor >=
210 (start_derivative_section[current_derivative_section] +
211 current_derivative_section_cursor)) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800212 if (jacobians[i] != NULL) {
213 input_jets[parameter_cursor].v[active_parameter_count] = 1.0;
214 ++active_parameter_count;
215 ++current_derivative_section_cursor;
216 } else {
217 ++current_derivative_section;
218 current_derivative_section_cursor = 0;
219 }
220 }
221 }
222 }
223
224 if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {
225 return false;
226 }
227
228 // Copy the pieces of the jacobians into their final place.
229 active_parameter_count = 0;
230
231 current_derivative_section = initial_derivative_section;
232 current_derivative_section_cursor = initial_derivative_section_cursor;
233
234 for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {
235 for (int j = 0; j < parameter_block_sizes()[i];
236 ++j, parameter_cursor++) {
237 if (active_parameter_count < Stride &&
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800238 parameter_cursor >=
239 (start_derivative_section[current_derivative_section] +
240 current_derivative_section_cursor)) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800241 if (jacobians[i] != NULL) {
242 for (int k = 0; k < num_residuals(); ++k) {
243 jacobians[i][k * parameter_block_sizes()[i] + j] =
244 output_jets[k].v[active_parameter_count];
245 }
246 ++active_parameter_count;
247 ++current_derivative_section_cursor;
248 } else {
249 ++current_derivative_section;
250 current_derivative_section_cursor = 0;
251 }
252 }
253 }
254 }
255
256 // Only copy the residuals over once (even though we compute them on
257 // every loop).
258 if (pass == num_strides - 1) {
259 for (int k = 0; k < num_residuals(); ++k) {
260 residuals[k] = output_jets[k].a;
261 }
262 }
263 }
264 return true;
265 }
266
267 private:
268 std::unique_ptr<CostFunctor> functor_;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800269 Ownership ownership_;
Austin Schuh70cc9552019-01-21 19:46:48 -0800270};
271
272} // namespace ceres
273
274#endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_