Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame] | 1 | /*----------------------------------------------------------------------------*/ |
Brian Silverman | 1a67511 | 2016-02-20 20:42:49 -0500 | [diff] [blame^] | 2 | /* Copyright (c) FIRST 2008-2016. All Rights Reserved. */ |
Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame] | 3 | /* Open Source Software - may be modified and shared by FRC teams. The code */ |
Brian Silverman | 1a67511 | 2016-02-20 20:42:49 -0500 | [diff] [blame^] | 4 | /* must be accompanied by the FIRST BSD license file in the root directory of */ |
| 5 | /* the project. */ |
Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame] | 6 | /*----------------------------------------------------------------------------*/ |
| 7 | |
| 8 | #include "PWM.h" |
| 9 | |
| 10 | #include "Resource.h" |
| 11 | #include "Utility.h" |
| 12 | #include "WPIErrors.h" |
| 13 | #include "HAL/HAL.hpp" |
| 14 | |
| 15 | #include <sstream> |
| 16 | |
| 17 | constexpr float PWM::kDefaultPwmPeriod; |
| 18 | constexpr float PWM::kDefaultPwmCenter; |
| 19 | const int32_t PWM::kDefaultPwmStepsDown; |
| 20 | const int32_t PWM::kPwmDisabled; |
| 21 | |
| 22 | /** |
| 23 | * Allocate a PWM given a channel number. |
| 24 | * |
| 25 | * Checks channel value range and allocates the appropriate channel. |
| 26 | * The allocation is only done to help users ensure that they don't double |
| 27 | * assign channels. |
| 28 | * @param channel The PWM channel number. 0-9 are on-board, 10-19 are on the MXP |
| 29 | * port |
| 30 | */ |
| 31 | PWM::PWM(uint32_t channel) { |
| 32 | std::stringstream buf; |
| 33 | |
| 34 | if (!CheckPWMChannel(channel)) { |
| 35 | buf << "PWM Channel " << channel; |
| 36 | wpi_setWPIErrorWithContext(ChannelIndexOutOfRange, buf.str()); |
| 37 | return; |
| 38 | } |
| 39 | |
| 40 | int32_t status = 0; |
| 41 | allocatePWMChannel(m_pwm_ports[channel], &status); |
| 42 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 43 | |
| 44 | m_channel = channel; |
| 45 | |
| 46 | setPWM(m_pwm_ports[m_channel], kPwmDisabled, &status); |
| 47 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 48 | |
| 49 | m_eliminateDeadband = false; |
| 50 | |
| 51 | HALReport(HALUsageReporting::kResourceType_PWM, channel); |
| 52 | } |
| 53 | |
| 54 | /** |
| 55 | * Free the PWM channel. |
| 56 | * |
| 57 | * Free the resource associated with the PWM channel and set the value to 0. |
| 58 | */ |
| 59 | PWM::~PWM() { |
| 60 | int32_t status = 0; |
| 61 | |
| 62 | setPWM(m_pwm_ports[m_channel], kPwmDisabled, &status); |
| 63 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 64 | |
| 65 | freePWMChannel(m_pwm_ports[m_channel], &status); |
| 66 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 67 | |
| 68 | if (m_table != nullptr) m_table->RemoveTableListener(this); |
| 69 | } |
| 70 | |
| 71 | /** |
| 72 | * Optionally eliminate the deadband from a speed controller. |
| 73 | * @param eliminateDeadband If true, set the motor curve on the Jaguar to |
| 74 | * eliminate |
| 75 | * the deadband in the middle of the range. Otherwise, keep the full range |
| 76 | * without |
| 77 | * modifying any values. |
| 78 | */ |
| 79 | void PWM::EnableDeadbandElimination(bool eliminateDeadband) { |
| 80 | if (StatusIsFatal()) return; |
| 81 | m_eliminateDeadband = eliminateDeadband; |
| 82 | } |
| 83 | |
| 84 | /** |
| 85 | * Set the bounds on the PWM values. |
| 86 | * This sets the bounds on the PWM values for a particular each type of |
| 87 | * controller. The values |
| 88 | * determine the upper and lower speeds as well as the deadband bracket. |
| 89 | * @param max The Minimum pwm value |
| 90 | * @param deadbandMax The high end of the deadband range |
| 91 | * @param center The center speed (off) |
| 92 | * @param deadbandMin The low end of the deadband range |
| 93 | * @param min The minimum pwm value |
| 94 | */ |
| 95 | void PWM::SetBounds(int32_t max, int32_t deadbandMax, int32_t center, |
| 96 | int32_t deadbandMin, int32_t min) { |
| 97 | if (StatusIsFatal()) return; |
| 98 | m_maxPwm = max; |
| 99 | m_deadbandMaxPwm = deadbandMax; |
| 100 | m_centerPwm = center; |
| 101 | m_deadbandMinPwm = deadbandMin; |
| 102 | m_minPwm = min; |
| 103 | } |
| 104 | |
| 105 | /** |
| 106 | * Set the bounds on the PWM pulse widths. |
| 107 | * This sets the bounds on the PWM values for a particular type of controller. |
| 108 | * The values |
| 109 | * determine the upper and lower speeds as well as the deadband bracket. |
| 110 | * @param max The max PWM pulse width in ms |
| 111 | * @param deadbandMax The high end of the deadband range pulse width in ms |
| 112 | * @param center The center (off) pulse width in ms |
| 113 | * @param deadbandMin The low end of the deadband pulse width in ms |
| 114 | * @param min The minimum pulse width in ms |
| 115 | */ |
| 116 | void PWM::SetBounds(double max, double deadbandMax, double center, |
| 117 | double deadbandMin, double min) { |
| 118 | // calculate the loop time in milliseconds |
| 119 | int32_t status = 0; |
| 120 | double loopTime = |
| 121 | getLoopTiming(&status) / (kSystemClockTicksPerMicrosecond * 1e3); |
| 122 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 123 | |
| 124 | if (StatusIsFatal()) return; |
| 125 | |
| 126 | m_maxPwm = (int32_t)((max - kDefaultPwmCenter) / loopTime + |
| 127 | kDefaultPwmStepsDown - 1); |
| 128 | m_deadbandMaxPwm = (int32_t)((deadbandMax - kDefaultPwmCenter) / loopTime + |
| 129 | kDefaultPwmStepsDown - 1); |
| 130 | m_centerPwm = (int32_t)((center - kDefaultPwmCenter) / loopTime + |
| 131 | kDefaultPwmStepsDown - 1); |
| 132 | m_deadbandMinPwm = (int32_t)((deadbandMin - kDefaultPwmCenter) / loopTime + |
| 133 | kDefaultPwmStepsDown - 1); |
| 134 | m_minPwm = (int32_t)((min - kDefaultPwmCenter) / loopTime + |
| 135 | kDefaultPwmStepsDown - 1); |
| 136 | } |
| 137 | |
| 138 | /** |
| 139 | * Set the PWM value based on a position. |
| 140 | * |
| 141 | * This is intended to be used by servos. |
| 142 | * |
| 143 | * @pre SetMaxPositivePwm() called. |
| 144 | * @pre SetMinNegativePwm() called. |
| 145 | * |
| 146 | * @param pos The position to set the servo between 0.0 and 1.0. |
| 147 | */ |
| 148 | void PWM::SetPosition(float pos) { |
| 149 | if (StatusIsFatal()) return; |
| 150 | if (pos < 0.0) { |
| 151 | pos = 0.0; |
| 152 | } else if (pos > 1.0) { |
| 153 | pos = 1.0; |
| 154 | } |
| 155 | |
| 156 | // note, need to perform the multiplication below as floating point before |
| 157 | // converting to int |
| 158 | unsigned short rawValue = |
| 159 | (int32_t)((pos * (float)GetFullRangeScaleFactor()) + GetMinNegativePwm()); |
| 160 | // printf("MinNegPWM: %d FullRangeScaleFactor: %d Raw value: %5d Input |
| 161 | //value: %4.4f\n", GetMinNegativePwm(), GetFullRangeScaleFactor(), rawValue, |
| 162 | //pos); |
| 163 | |
| 164 | // wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= |
| 165 | //GetMaxPositivePwm())); |
| 166 | wpi_assert(rawValue != kPwmDisabled); |
| 167 | |
| 168 | // send the computed pwm value to the FPGA |
| 169 | SetRaw((unsigned short)rawValue); |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * Get the PWM value in terms of a position. |
| 174 | * |
| 175 | * This is intended to be used by servos. |
| 176 | * |
| 177 | * @pre SetMaxPositivePwm() called. |
| 178 | * @pre SetMinNegativePwm() called. |
| 179 | * |
| 180 | * @return The position the servo is set to between 0.0 and 1.0. |
| 181 | */ |
| 182 | float PWM::GetPosition() const { |
| 183 | if (StatusIsFatal()) return 0.0; |
| 184 | int32_t value = GetRaw(); |
| 185 | if (value < GetMinNegativePwm()) { |
| 186 | return 0.0; |
| 187 | } else if (value > GetMaxPositivePwm()) { |
| 188 | return 1.0; |
| 189 | } else { |
| 190 | return (float)(value - GetMinNegativePwm()) / |
| 191 | (float)GetFullRangeScaleFactor(); |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * Set the PWM value based on a speed. |
| 197 | * |
| 198 | * This is intended to be used by speed controllers. |
| 199 | * |
| 200 | * @pre SetMaxPositivePwm() called. |
| 201 | * @pre SetMinPositivePwm() called. |
| 202 | * @pre SetCenterPwm() called. |
| 203 | * @pre SetMaxNegativePwm() called. |
| 204 | * @pre SetMinNegativePwm() called. |
| 205 | * |
| 206 | * @param speed The speed to set the speed controller between -1.0 and 1.0. |
| 207 | */ |
| 208 | void PWM::SetSpeed(float speed) { |
| 209 | if (StatusIsFatal()) return; |
| 210 | // clamp speed to be in the range 1.0 >= speed >= -1.0 |
| 211 | if (speed < -1.0) { |
| 212 | speed = -1.0; |
| 213 | } else if (speed > 1.0) { |
| 214 | speed = 1.0; |
| 215 | } |
| 216 | |
| 217 | // calculate the desired output pwm value by scaling the speed appropriately |
| 218 | int32_t rawValue; |
| 219 | if (speed == 0.0) { |
| 220 | rawValue = GetCenterPwm(); |
| 221 | } else if (speed > 0.0) { |
| 222 | rawValue = (int32_t)(speed * ((float)GetPositiveScaleFactor()) + |
| 223 | ((float)GetMinPositivePwm()) + 0.5); |
| 224 | } else { |
| 225 | rawValue = (int32_t)(speed * ((float)GetNegativeScaleFactor()) + |
| 226 | ((float)GetMaxNegativePwm()) + 0.5); |
| 227 | } |
| 228 | |
| 229 | // the above should result in a pwm_value in the valid range |
| 230 | wpi_assert((rawValue >= GetMinNegativePwm()) && |
| 231 | (rawValue <= GetMaxPositivePwm())); |
| 232 | wpi_assert(rawValue != kPwmDisabled); |
| 233 | |
| 234 | // send the computed pwm value to the FPGA |
| 235 | SetRaw(rawValue); |
| 236 | } |
| 237 | |
| 238 | /** |
| 239 | * Get the PWM value in terms of speed. |
| 240 | * |
| 241 | * This is intended to be used by speed controllers. |
| 242 | * |
| 243 | * @pre SetMaxPositivePwm() called. |
| 244 | * @pre SetMinPositivePwm() called. |
| 245 | * @pre SetMaxNegativePwm() called. |
| 246 | * @pre SetMinNegativePwm() called. |
| 247 | * |
| 248 | * @return The most recently set speed between -1.0 and 1.0. |
| 249 | */ |
| 250 | float PWM::GetSpeed() const { |
| 251 | if (StatusIsFatal()) return 0.0; |
| 252 | int32_t value = GetRaw(); |
| 253 | if (value == PWM::kPwmDisabled) { |
| 254 | return 0.0; |
| 255 | } else if (value > GetMaxPositivePwm()) { |
| 256 | return 1.0; |
| 257 | } else if (value < GetMinNegativePwm()) { |
| 258 | return -1.0; |
| 259 | } else if (value > GetMinPositivePwm()) { |
| 260 | return (float)(value - GetMinPositivePwm()) / |
| 261 | (float)GetPositiveScaleFactor(); |
| 262 | } else if (value < GetMaxNegativePwm()) { |
| 263 | return (float)(value - GetMaxNegativePwm()) / |
| 264 | (float)GetNegativeScaleFactor(); |
| 265 | } else { |
| 266 | return 0.0; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | /** |
| 271 | * Set the PWM value directly to the hardware. |
| 272 | * |
| 273 | * Write a raw value to a PWM channel. |
| 274 | * |
| 275 | * @param value Raw PWM value. |
| 276 | */ |
| 277 | void PWM::SetRaw(unsigned short value) { |
| 278 | if (StatusIsFatal()) return; |
| 279 | |
| 280 | int32_t status = 0; |
| 281 | setPWM(m_pwm_ports[m_channel], value, &status); |
| 282 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 283 | } |
| 284 | |
| 285 | /** |
| 286 | * Get the PWM value directly from the hardware. |
| 287 | * |
| 288 | * Read a raw value from a PWM channel. |
| 289 | * |
| 290 | * @return Raw PWM control value. |
| 291 | */ |
| 292 | unsigned short PWM::GetRaw() const { |
| 293 | if (StatusIsFatal()) return 0; |
| 294 | |
| 295 | int32_t status = 0; |
| 296 | unsigned short value = getPWM(m_pwm_ports[m_channel], &status); |
| 297 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 298 | |
| 299 | return value; |
| 300 | } |
| 301 | |
| 302 | /** |
| 303 | * Slow down the PWM signal for old devices. |
| 304 | * |
| 305 | * @param mult The period multiplier to apply to this channel |
| 306 | */ |
| 307 | void PWM::SetPeriodMultiplier(PeriodMultiplier mult) { |
| 308 | if (StatusIsFatal()) return; |
| 309 | |
| 310 | int32_t status = 0; |
| 311 | |
| 312 | switch (mult) { |
| 313 | case kPeriodMultiplier_4X: |
| 314 | setPWMPeriodScale(m_pwm_ports[m_channel], 3, |
| 315 | &status); // Squelch 3 out of 4 outputs |
| 316 | break; |
| 317 | case kPeriodMultiplier_2X: |
| 318 | setPWMPeriodScale(m_pwm_ports[m_channel], 1, |
| 319 | &status); // Squelch 1 out of 2 outputs |
| 320 | break; |
| 321 | case kPeriodMultiplier_1X: |
| 322 | setPWMPeriodScale(m_pwm_ports[m_channel], 0, |
| 323 | &status); // Don't squelch any outputs |
| 324 | break; |
| 325 | default: |
| 326 | wpi_assert(false); |
| 327 | } |
| 328 | |
| 329 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 330 | } |
| 331 | |
| 332 | void PWM::SetZeroLatch() { |
| 333 | if (StatusIsFatal()) return; |
| 334 | |
| 335 | int32_t status = 0; |
| 336 | |
| 337 | latchPWMZero(m_pwm_ports[m_channel], &status); |
| 338 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 339 | } |
| 340 | |
| 341 | void PWM::ValueChanged(ITable* source, llvm::StringRef key, |
| 342 | std::shared_ptr<nt::Value> value, bool isNew) { |
| 343 | if (!value->IsDouble()) return; |
| 344 | SetSpeed(value->GetDouble()); |
| 345 | } |
| 346 | |
| 347 | void PWM::UpdateTable() { |
| 348 | if (m_table != nullptr) { |
| 349 | m_table->PutNumber("Value", GetSpeed()); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | void PWM::StartLiveWindowMode() { |
| 354 | SetSpeed(0); |
| 355 | if (m_table != nullptr) { |
| 356 | m_table->AddTableListener("Value", this, true); |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | void PWM::StopLiveWindowMode() { |
| 361 | SetSpeed(0); |
| 362 | if (m_table != nullptr) { |
| 363 | m_table->RemoveTableListener(this); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | std::string PWM::GetSmartDashboardType() const { return "Speed Controller"; } |
| 368 | |
| 369 | void PWM::InitTable(std::shared_ptr<ITable> subTable) { |
| 370 | m_table = subTable; |
| 371 | UpdateTable(); |
| 372 | } |
| 373 | |
| 374 | std::shared_ptr<ITable> PWM::GetTable() const { return m_table; } |